Human-like object concept representations emerge naturally in multimodal large language models

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He
{"title":"Human-like object concept representations emerge naturally in multimodal large language models","authors":"Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He","doi":"10.1038/s42256-025-01049-z","DOIUrl":null,"url":null,"abstract":"<p>Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of large language models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? Here we combined behavioural and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgements from LLMs and multimodal LLMs to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and multimodal LLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as the extrastriate body area, parahippocampal place area, retrosplenial cortex and fusiform face area. This provides compelling evidence that the object representations in LLMs, although not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"40 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01049-z","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of large language models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? Here we combined behavioural and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgements from LLMs and multimodal LLMs to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and multimodal LLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as the extrastriate body area, parahippocampal place area, retrosplenial cortex and fusiform face area. This provides compelling evidence that the object representations in LLMs, although not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.

Abstract Image

类人对象概念表示在多模态大型语言模型中自然出现
理解人类如何概念化和分类自然物体提供了感知和认知的关键见解。随着大型语言模型(llm)的出现,一个关键问题出现了:这些模型能否从语言和多模态数据中开发出类似人类的对象表示?在这里,我们结合行为和神经影像学分析来探索llm中物体概念表征与人类认知之间的关系。我们从llm和多模态llm中收集了470万个三重判断,以获得捕获1854个自然物体相似结构的低维嵌入。所得到的66维嵌入是稳定的、可预测的,并表现出类似于人类心理表征的语义聚类。值得注意的是,这些嵌入的维度是可解释的,这表明llm和多模态llm开发了类似人类的对象概念表示。进一步分析表明,模型嵌入与脑区(如体外区、海马旁区、脾后皮层和梭状面区)的神经活动模式有很强的一致性。这提供了令人信服的证据,证明llm中的对象表示虽然与人类的不相同,但具有反映人类概念知识关键方面的基本相似性。我们的发现促进了对机器智能的理解,并为开发更像人类的人工认知系统提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信