Strong hydrogen trapping by tangled dislocations in cold-drawn pearlitic steels

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Huang , Chuanjie Cui , Ranming Niu , Fenghua Lu , Cheng-Yun Wu , Xiaoxiong Zhu , Hongzhou Lu , Yongqing Zhang , Pang-Yu Liu , Bosheng Dong , Yi-Hsuan Sun , Hongjian Wang , Wei Li , Hung-Wei Yen , Aimin Guo , Julie M. Cairney , Emilio Martínez-Pañeda , Eason Yi-Sheng Chen
{"title":"Strong hydrogen trapping by tangled dislocations in cold-drawn pearlitic steels","authors":"Chao Huang ,&nbsp;Chuanjie Cui ,&nbsp;Ranming Niu ,&nbsp;Fenghua Lu ,&nbsp;Cheng-Yun Wu ,&nbsp;Xiaoxiong Zhu ,&nbsp;Hongzhou Lu ,&nbsp;Yongqing Zhang ,&nbsp;Pang-Yu Liu ,&nbsp;Bosheng Dong ,&nbsp;Yi-Hsuan Sun ,&nbsp;Hongjian Wang ,&nbsp;Wei Li ,&nbsp;Hung-Wei Yen ,&nbsp;Aimin Guo ,&nbsp;Julie M. Cairney ,&nbsp;Emilio Martínez-Pañeda ,&nbsp;Eason Yi-Sheng Chen","doi":"10.1016/j.actamat.2025.121231","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of diffusible hydrogen atoms can lead to hydrogen embrittlement in steels, compromising their structural integrity. A potential solution is incorporating strong hydrogen traps into the microstructures to immobilize hydrogen solute atoms and prevent their diffusion towards stress-prone areas where embrittlement is most likely to occur. However, creating materials with effective hydrogen traps usually involves adding expensive alloying elements, which increase the production costs, hindering the adoption of this strategy in the steel industry. Here we show that cold drawing of pearlitic steel rods introduces a high density of dislocations that accumulate and tangle at cementite-ferrite interfaces; this strengthens the steel and make it less susceptible to embrittlement. We use atom probe tomography to confirm that these tangled dislocations firmly trap hydrogen in a steel that displays low embrittlement susceptibility. Our findings suggest a pathway for producing metallic materials that have an excellent combination of high strength and hydrogen embrittlement resistance, underscoring the potential of using structural defects as cost-effective hydrogen traps.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121231"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964542500518X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of diffusible hydrogen atoms can lead to hydrogen embrittlement in steels, compromising their structural integrity. A potential solution is incorporating strong hydrogen traps into the microstructures to immobilize hydrogen solute atoms and prevent their diffusion towards stress-prone areas where embrittlement is most likely to occur. However, creating materials with effective hydrogen traps usually involves adding expensive alloying elements, which increase the production costs, hindering the adoption of this strategy in the steel industry. Here we show that cold drawing of pearlitic steel rods introduces a high density of dislocations that accumulate and tangle at cementite-ferrite interfaces; this strengthens the steel and make it less susceptible to embrittlement. We use atom probe tomography to confirm that these tangled dislocations firmly trap hydrogen in a steel that displays low embrittlement susceptibility. Our findings suggest a pathway for producing metallic materials that have an excellent combination of high strength and hydrogen embrittlement resistance, underscoring the potential of using structural defects as cost-effective hydrogen traps.

Abstract Image

冷拔珠光体钢中缠结位错引起的强氢捕获
扩散氢原子的存在会导致钢中的氢脆,损害其结构完整性。一种潜在的解决方案是在微结构中加入强氢捕集器,以固定溶质氢原子,并防止它们扩散到最有可能发生脆化的应力易发区域。然而,制造具有有效氢捕集器的材料通常需要添加昂贵的合金元素,这增加了生产成本,阻碍了这一策略在钢铁行业的采用。研究表明,冷拔珠光体钢棒在渗碳-铁素体界面处产生高密度的位错积累和缠结;这加强了钢,使其不易脆化。我们使用原子探针断层扫描证实,这些缠结位错牢固地捕获氢在钢显示低脆化敏感性。我们的发现为生产具有高强度和抗氢脆性能的金属材料提供了一条途径,强调了使用结构缺陷作为具有成本效益的氢捕集器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信