Enabling high strength yet ductility in a refractory high-entropy alloy through oxygen-nitrogen synergistic effect

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaodi Wang , Tianxin Li , Dingfeng Xu , Yuan Wu , Qianqian Wang , Peter K. Liaw , Yiping Lu
{"title":"Enabling high strength yet ductility in a refractory high-entropy alloy through oxygen-nitrogen synergistic effect","authors":"Xiaodi Wang ,&nbsp;Tianxin Li ,&nbsp;Dingfeng Xu ,&nbsp;Yuan Wu ,&nbsp;Qianqian Wang ,&nbsp;Peter K. Liaw ,&nbsp;Yiping Lu","doi":"10.1016/j.actamat.2025.121229","DOIUrl":null,"url":null,"abstract":"<div><div>Most refractory high-entropy alloys (RHEAs) are susceptible to brittle fracture when subjected to tensile loading. The TiZrHfNb RHEA and its derivative possess good tensile ductility, but still encounter issues with low yield strength. In this study, we propose an Oxygen-Nitrogen Synergistic Effect (ONSE) for reinforcing the TiZrHfNb RHEA. Oxygen atoms create local chemical order (LCO), seeding more dislocation nucleation sites, promoting dislocation multiplication and ensuring uniform deformation. Nitrogen atoms induce lattice distortion, hinder dislocation motion, and generate a significant solid solution strengthening effect. The introduction of ONSE results in high-density mobile dislocations distributed throughout the alloy, as opposed to the conventional belief that dislocations are limited to narrow slip bands by LCOs. The model alloy (TiZrHfNb)<sub>98</sub>N<sub>1.5</sub>O<sub>0.5</sub> (at. %) designed by ONSE showed a significantly improved yield strength of 1412.9 ± 13.5 MPa, representing a 92 % enhancement compared to the TiZrHfNb RHEA, while maintaining a fracture elongation of 10 %. Our strengthening approach provides a new option for improving the strength of other body-centered-cubic (BCC) RHEAs.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121229"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425005166","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Most refractory high-entropy alloys (RHEAs) are susceptible to brittle fracture when subjected to tensile loading. The TiZrHfNb RHEA and its derivative possess good tensile ductility, but still encounter issues with low yield strength. In this study, we propose an Oxygen-Nitrogen Synergistic Effect (ONSE) for reinforcing the TiZrHfNb RHEA. Oxygen atoms create local chemical order (LCO), seeding more dislocation nucleation sites, promoting dislocation multiplication and ensuring uniform deformation. Nitrogen atoms induce lattice distortion, hinder dislocation motion, and generate a significant solid solution strengthening effect. The introduction of ONSE results in high-density mobile dislocations distributed throughout the alloy, as opposed to the conventional belief that dislocations are limited to narrow slip bands by LCOs. The model alloy (TiZrHfNb)98N1.5O0.5 (at. %) designed by ONSE showed a significantly improved yield strength of 1412.9 ± 13.5 MPa, representing a 92 % enhancement compared to the TiZrHfNb RHEA, while maintaining a fracture elongation of 10 %. Our strengthening approach provides a new option for improving the strength of other body-centered-cubic (BCC) RHEAs.

Abstract Image

通过氧氮协同效应使难熔高熵合金具有高强度和延展性
大多数难熔高熵合金(RHEAs)在拉伸载荷作用下易发生脆性断裂。TiZrHfNb RHEA及其衍生物具有良好的拉伸延展性,但仍存在屈服强度低的问题。在这项研究中,我们提出了氧氮协同效应(ONSE)来增强TiZrHfNb RHEA。氧原子创造局部化学秩序(LCO),播下更多位错成核位点,促进位错增殖,确保均匀变形。氮原子诱导晶格畸变,阻碍位错运动,产生显著的固溶强化效应。ONSE的引入导致高密度的移动位错分布在整个合金中,这与传统观点相反,即位错被lco限制在狭窄的滑移带中。ONSE设计的模型合金(TiZrHfNb)98N1.5O0.5 (at.%)的屈服强度显著提高,达到1412.9±13.5 MPa,与TiZrHfNb RHEA相比提高了92%,同时保持了10%的断裂伸长率。我们的强化方法为提高其他体心立方(BCC) RHEAs的强度提供了一种新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信