Hongzhuo Qin, Zhaokai Zhou, Run Shi, Yumiao Mai, Yudi Xu, Fu Peng, Guangyang Cheng, Pengpeng Zhang, Wenjie Chen, Yun Chen, Yajun Chen, Ran Xu, Qiong Lu
{"title":"Insights into next-generation immunotherapy designs and tools: molecular mechanisms and therapeutic prospects","authors":"Hongzhuo Qin, Zhaokai Zhou, Run Shi, Yumiao Mai, Yudi Xu, Fu Peng, Guangyang Cheng, Pengpeng Zhang, Wenjie Chen, Yun Chen, Yajun Chen, Ran Xu, Qiong Lu","doi":"10.1186/s13045-025-01701-6","DOIUrl":null,"url":null,"abstract":"Immunotherapy has revolutionized the oncology treatment paradigm, and CAR-T cell therapy in particular represents a significant milestone in treating hematological malignancies. Nevertheless, tumor resistance due to target heterogeneity or mutation remains a Gordian knot for immunotherapy. This review elucidates molecular mechanisms and therapeutic potential of next-generation immunotherapeutic tools spanning genetically engineered immune cells, multi-specific antibodies, and cell engagers, emphasizing multi-targeting strategies to enhance personalized immunotherapy efficacy. Development of logic gate modulation-based circuits, adapter-mediated CARs, multi-specific antibodies, and cell engagers could minimize adverse effects while recognizing tumor signals. Ultimately, we highlight gene delivery, gene editing, and other technologies facilitating tailored immunotherapy, and discuss the promising prospects of artificial intelligence in gene-edited immune cells.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"250 1","pages":""},"PeriodicalIF":29.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13045-025-01701-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy has revolutionized the oncology treatment paradigm, and CAR-T cell therapy in particular represents a significant milestone in treating hematological malignancies. Nevertheless, tumor resistance due to target heterogeneity or mutation remains a Gordian knot for immunotherapy. This review elucidates molecular mechanisms and therapeutic potential of next-generation immunotherapeutic tools spanning genetically engineered immune cells, multi-specific antibodies, and cell engagers, emphasizing multi-targeting strategies to enhance personalized immunotherapy efficacy. Development of logic gate modulation-based circuits, adapter-mediated CARs, multi-specific antibodies, and cell engagers could minimize adverse effects while recognizing tumor signals. Ultimately, we highlight gene delivery, gene editing, and other technologies facilitating tailored immunotherapy, and discuss the promising prospects of artificial intelligence in gene-edited immune cells.
期刊介绍:
The Journal of Hematology & Oncology, an open-access journal, publishes high-quality research covering all aspects of hematology and oncology, including reviews and research highlights on "hot topics" by leading experts.
Given the close relationship and rapid evolution of hematology and oncology, the journal aims to meet the demand for a dedicated platform for publishing discoveries from both fields. It serves as an international platform for sharing laboratory and clinical findings among laboratory scientists, physician scientists, hematologists, and oncologists in an open-access format. With a rapid turnaround time from submission to publication, the journal facilitates real-time sharing of knowledge and new successes.