A Graph Representation Learning-Based Method for Event Prediction

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xi Zeng, Guangchun Luo, Ke Qin, Pengyi Zheng
{"title":"A Graph Representation Learning-Based Method for Event Prediction","authors":"Xi Zeng,&nbsp;Guangchun Luo,&nbsp;Ke Qin,&nbsp;Pengyi Zheng","doi":"10.1049/ise2/9706647","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the continuous advancement of big data and artificial intelligence technologies, event prediction is increasingly being utilized across a multitude of domains. Predicting events allows for the exploration of the developmental trajectories and summarization of patterns associated with these events. However, events typically encompass a myriad of elements and intricate relationships, necessitating an enhancement in the precision of event prediction. However, the existing methods suffer from poor data quality, insufficient feature information, limited generalization capability of the models, and difficulties in evaluating prediction errors. This paper proposes a novel event prediction method based on graph representation learning, aiming to improve the accuracy of event prediction while reducing the time cost. By constructing causal graphs and introducing the script event simulation method, the architecture combines graph neural networks (GNNs) with BERT to simplify the event prediction process. Additionally, by combining GNNs with pretrained language models, a dynamic graph representation learning method is proposed. This means that a unified graph representation learning model can be built by following specific rules, thus predicting the development trajectory of events more accurately. The study evaluates the effectiveness of dynamic graph representation learning technology in a specific scenario, specifically in the context of employee career choices. By converting the career graph of employees into low-dimensional representations, the effectiveness of the dynamic graph representation learning method in predicting employee career decisions is validated. This innovation not only improves the accuracy of event prediction but also helps better understand and respond to complex event relationships in practical applications, providing decision-makers with more powerful information support. Therefore, this research has important theoretical and practical significance, providing valuable references for future studies in related fields.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/9706647","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2/9706647","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous advancement of big data and artificial intelligence technologies, event prediction is increasingly being utilized across a multitude of domains. Predicting events allows for the exploration of the developmental trajectories and summarization of patterns associated with these events. However, events typically encompass a myriad of elements and intricate relationships, necessitating an enhancement in the precision of event prediction. However, the existing methods suffer from poor data quality, insufficient feature information, limited generalization capability of the models, and difficulties in evaluating prediction errors. This paper proposes a novel event prediction method based on graph representation learning, aiming to improve the accuracy of event prediction while reducing the time cost. By constructing causal graphs and introducing the script event simulation method, the architecture combines graph neural networks (GNNs) with BERT to simplify the event prediction process. Additionally, by combining GNNs with pretrained language models, a dynamic graph representation learning method is proposed. This means that a unified graph representation learning model can be built by following specific rules, thus predicting the development trajectory of events more accurately. The study evaluates the effectiveness of dynamic graph representation learning technology in a specific scenario, specifically in the context of employee career choices. By converting the career graph of employees into low-dimensional representations, the effectiveness of the dynamic graph representation learning method in predicting employee career decisions is validated. This innovation not only improves the accuracy of event prediction but also helps better understand and respond to complex event relationships in practical applications, providing decision-makers with more powerful information support. Therefore, this research has important theoretical and practical significance, providing valuable references for future studies in related fields.

基于图表示学习的事件预测方法
随着大数据和人工智能技术的不断发展,事件预测越来越多地应用于多个领域。预测事件允许探索发展轨迹和总结与这些事件相关的模式。然而,事件通常包含无数的元素和复杂的关系,需要提高事件预测的精度。然而,现有方法存在数据质量差、特征信息不足、模型泛化能力有限、预测误差难以评估等问题。本文提出了一种新的基于图表示学习的事件预测方法,旨在提高事件预测的准确性,同时降低时间成本。该体系结构通过构造因果图和引入脚本事件模拟方法,将图神经网络(gnn)与BERT相结合,简化了事件预测过程。此外,通过将gnn与预训练语言模型相结合,提出了一种动态图表示学习方法。这意味着可以按照特定的规则建立统一的图表示学习模型,从而更准确地预测事件的发展轨迹。本研究评估了动态图表示学习技术在特定情境下的有效性,特别是在员工职业选择的背景下。通过将员工的职业生涯图转换为低维表示,验证了动态图表示学习方法预测员工职业决策的有效性。这一创新不仅提高了事件预测的准确性,而且有助于在实际应用中更好地理解和应对复杂的事件关系,为决策者提供更强大的信息支持。因此,本研究具有重要的理论和现实意义,为今后相关领域的研究提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信