Phosphorylation enables allosteric control of a viral condensate.

Julia Acker, Xinyu Wang, Daniel Desirò, Tanushree Agarwal, Alice Colyer, Cyril Haller, Rob Scrutton, Lee Sherry, Kadi L Saar, Rosie Murray, Ksenia Fominykh, Sai Hou Chong, Jeremy D Schmit, Antonio N Calabrese, Tuomas P J Knowles, Alexander Borodavka
{"title":"Phosphorylation enables allosteric control of a viral condensate.","authors":"Julia Acker, Xinyu Wang, Daniel Desirò, Tanushree Agarwal, Alice Colyer, Cyril Haller, Rob Scrutton, Lee Sherry, Kadi L Saar, Rosie Murray, Ksenia Fominykh, Sai Hou Chong, Jeremy D Schmit, Antonio N Calabrese, Tuomas P J Knowles, Alexander Borodavka","doi":"10.1101/2025.05.24.655949","DOIUrl":null,"url":null,"abstract":"<p><p>In many viruses, intrinsically disordered proteins (IDPs) drive the formation of replicative organelles essential for viral production. In species A rotaviruses, the disordered protein NSP5 forms condensates in cells via liquid-liquid phase separation (LLPS). Yet the sequence diversity of NSP5 raises the question of whether condensate formation is conserved across all strains and if distinct variants employ alternative mechanisms for nucleating phase separation. Using a machine learning approach, we demonstrate that NSP5 variants differ significantly in their propensity to phase-separate. We engineered a variant incorporating amino acid signatures from strains with low LLPS tendency, which failed to phase separate in vitro yet supported the formation of replicative condensates in recombinant viruses in cells. Low-tendency LLPS strains require phosphorylation of NSP5 to nucleate phase separation, whereas high-tendency strains do not, suggesting distinct nucleation mechanisms. Furthermore, hydrogen-deuterium exchange mass spectrometry revealed a phosphorylation-driven allosteric switch between binding sites on the high-propensity variant. These findings establish that phosphorylation plays a context-dependent role in the formation of replicative organelles across diverse rotaviruses.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139845/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.24.655949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many viruses, intrinsically disordered proteins (IDPs) drive the formation of replicative organelles essential for viral production. In species A rotaviruses, the disordered protein NSP5 forms condensates in cells via liquid-liquid phase separation (LLPS). Yet the sequence diversity of NSP5 raises the question of whether condensate formation is conserved across all strains and if distinct variants employ alternative mechanisms for nucleating phase separation. Using a machine learning approach, we demonstrate that NSP5 variants differ significantly in their propensity to phase-separate. We engineered a variant incorporating amino acid signatures from strains with low LLPS tendency, which failed to phase separate in vitro yet supported the formation of replicative condensates in recombinant viruses in cells. Low-tendency LLPS strains require phosphorylation of NSP5 to nucleate phase separation, whereas high-tendency strains do not, suggesting distinct nucleation mechanisms. Furthermore, hydrogen-deuterium exchange mass spectrometry revealed a phosphorylation-driven allosteric switch between binding sites on the high-propensity variant. These findings establish that phosphorylation plays a context-dependent role in the formation of replicative organelles across diverse rotaviruses.

磷酸化使病毒凝聚物的变构控制成为可能。
在许多病毒中,内在无序蛋白(IDPs)驱动病毒生产所必需的复制细胞器的形成。在A种轮状病毒中,无序蛋白NSP5通过液-液相分离(LLPS)在细胞中形成凝聚体。然而,NSP5的序列多样性提出了一个问题,即凝结物的形成是否在所有菌株中都是保守的,以及不同的变体是否采用了不同的成核相分离机制。使用机器学习方法,我们证明了NSP5变体在相位分离倾向方面存在显着差异。我们设计了一种含有低LLPS倾向菌株氨基酸特征的变体,该变体在体外不能相分离,但支持重组病毒在细胞内形成复制凝聚体。低倾向的LLPS菌株需要NSP5磷酸化才能成核相分离,而高倾向的菌株则不需要,这表明不同的成核机制。此外,氢-氘交换质谱分析显示,高倾向变异的结合位点之间存在磷酸化驱动的变构开关。这些发现表明,磷酸化在不同轮状病毒的复制细胞器形成中起着环境依赖的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信