Integrative Multi-Omics Analysis Identifies Nuclear Factor I as a Key Driver of Dysregulated Purine Metabolism in DIPG.

Ian Mersich, Sunny Congrove, Matthew Horchar, Roman Caceres, Ranjithmenon Muraleedharan, Janki Desai, Pankaj Desai, Larry Sallans, Julie A Reisz, Abby Grier, Matthew R Hass, Omer Donmez, Cailing Yin, Matthew T Weirauch, Leah Kottyan, Charles B Stevenson, Claire Sun, Peter de Blank, Natasha Pillay-Smiley, Trent R Hummel, Nagarajan Elumalai, Ali Tavassoli, Ron Firestein, Timothy N Phoenix, Angelo D'Alessandro, Biplab Dasgupta
{"title":"Integrative Multi-Omics Analysis Identifies Nuclear Factor I as a Key Driver of Dysregulated Purine Metabolism in DIPG.","authors":"Ian Mersich, Sunny Congrove, Matthew Horchar, Roman Caceres, Ranjithmenon Muraleedharan, Janki Desai, Pankaj Desai, Larry Sallans, Julie A Reisz, Abby Grier, Matthew R Hass, Omer Donmez, Cailing Yin, Matthew T Weirauch, Leah Kottyan, Charles B Stevenson, Claire Sun, Peter de Blank, Natasha Pillay-Smiley, Trent R Hummel, Nagarajan Elumalai, Ali Tavassoli, Ron Firestein, Timothy N Phoenix, Angelo D'Alessandro, Biplab Dasgupta","doi":"10.1101/2025.05.21.655327","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse intrinsic pontine glioma (DIPG) is a devastating brainstem cancer in children, with a median survival of under one year and limited treatment options. Over 80% of DIPGs possess a H3K27M mutation. To identify metabolic vulnerabilities linked to this mutation, we utilized a multi-omics approach in H3K27M-expressing cells, patient-derived cell lines, and mouse models. We show that by reprogramming chromatin landscape the mutation aberrantly induces NFI transcriptional activity, leading to misregulated purine metabolism. The mutation amplifies purine biosynthesis and degradation via the enzymes ATIC and PNP, respectively. Unregulated purine degradation relieves the negative feedback of purines on their own synthesis allowing continuous synthesis, use and degradation making DIPGs reliant on purine biosynthesis. Targeting ATIC reduced tumor progression and improved survival in mice. We propose ATIC as a potential novel target in DIPG.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.05.21.655327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse intrinsic pontine glioma (DIPG) is a devastating brainstem cancer in children, with a median survival of under one year and limited treatment options. Over 80% of DIPGs possess a H3K27M mutation. To identify metabolic vulnerabilities linked to this mutation, we utilized a multi-omics approach in H3K27M-expressing cells, patient-derived cell lines, and mouse models. We show that by reprogramming chromatin landscape the mutation aberrantly induces NFI transcriptional activity, leading to misregulated purine metabolism. The mutation amplifies purine biosynthesis and degradation via the enzymes ATIC and PNP, respectively. Unregulated purine degradation relieves the negative feedback of purines on their own synthesis allowing continuous synthesis, use and degradation making DIPGs reliant on purine biosynthesis. Targeting ATIC reduced tumor progression and improved survival in mice. We propose ATIC as a potential novel target in DIPG.

综合多组学分析发现核因子I是DIPG中嘌呤代谢失调的关键驱动因素。
弥漫性脑桥胶质瘤(DIPG)是一种儿童脑干恶性肿瘤,中位生存期不足一年,治疗方案有限。超过80%的dipg具有H3K27M突变。为了确定与该突变相关的代谢脆弱性,我们在表达h3k27m的细胞、患者来源的细胞系和小鼠模型中使用了多组学方法。我们发现,通过重编程染色质结构,突变异常诱导NFI转录活性,导致嘌呤代谢失调。该突变分别通过ATIC和PNP酶放大嘌呤的生物合成和降解。不受调节的嘌呤降解减轻了嘌呤对其自身合成的负反馈,允许连续合成、使用和降解,使dipg依赖于嘌呤的生物合成。靶向ATIC可减少肿瘤进展,提高小鼠存活率。我们建议ATIC作为DIPG的潜在新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信