Matrix completion-informed deep unfolded equilibrium models for self-supervised k $k$ -space interpolation in MRI.

Medical physics Pub Date : 2025-06-05 DOI:10.1002/mp.17924
Chen Luo, Huayu Wang, Yuanyuan Liu, Taofeng Xie, Guoqing Chen, Qiyu Jin, Dong Liang, Zhuo-Xu Cui
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Matrix completion-informed deep unfolded equilibrium models for self-supervised <ns0:math><ns0:semantics><ns0:mi>k</ns0:mi> <ns0:annotation>$k$</ns0:annotation></ns0:semantics> </ns0:math> -space interpolation in MRI.","authors":"Chen Luo, Huayu Wang, Yuanyuan Liu, Taofeng Xie, Guoqing Chen, Qiyu Jin, Dong Liang, Zhuo-Xu Cui","doi":"10.1002/mp.17924","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Self-supervised methods for magnetic resonance imaging (MRI) reconstruction have garnered significant interest due to their ability to address the challenges of slow data acquisition and scarcity of fully sampled labels. Current regularization-based self-supervised techniques merge the theoretical foundations of regularization with the representational strengths of deep learning and enable effective reconstruction under higher acceleration rates, yet often fall short in interpretability, leaving their theoretical underpinnings lacking.</p><p><strong>Purpose: </strong>In this paper, we introduce a novel self-supervised approach that provides stringent theoretical guarantees and interpretable networks while circumventing the need for fully sampled labels.</p><p><strong>Methods: </strong>Our method exploits the intrinsic relationship between convolutional neural networks and the null space within structural low-rank models, effectively integrating network parameters into an iterative reconstruction process. Our network learns gradient descent steps of the projected gradient descent algorithm without changing its convergence property, which implements a fully interpretable unfolded model. We design a non-expansive mapping for the network architecture, ensuring convergence to a fixed point. This well-defined framework enables complete reconstruction of missing <math><semantics><mi>k</mi> <annotation>$k$</annotation></semantics> </math> -space data grounded in matrix completion theory, independent of fully sampled labels.</p><p><strong>Results: </strong>Qualitative and quantitative experimental results on multi-coil MRI reconstruction demonstrate the efficacy of our self-supervised approach, showing marked improvements over existing self-supervised and traditional regularization methods, achieving results comparable to supervised learning in selected scenarios. Our method surpasses existing self-supervised approaches in reconstruction quality and also delivers competitive performance under supervised settings.</p><p><strong>Conclusions: </strong>This work not only advances the state-of-the-art in MRI reconstruction but also enhances interpretability in deep learning applications for medical imaging.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Self-supervised methods for magnetic resonance imaging (MRI) reconstruction have garnered significant interest due to their ability to address the challenges of slow data acquisition and scarcity of fully sampled labels. Current regularization-based self-supervised techniques merge the theoretical foundations of regularization with the representational strengths of deep learning and enable effective reconstruction under higher acceleration rates, yet often fall short in interpretability, leaving their theoretical underpinnings lacking.

Purpose: In this paper, we introduce a novel self-supervised approach that provides stringent theoretical guarantees and interpretable networks while circumventing the need for fully sampled labels.

Methods: Our method exploits the intrinsic relationship between convolutional neural networks and the null space within structural low-rank models, effectively integrating network parameters into an iterative reconstruction process. Our network learns gradient descent steps of the projected gradient descent algorithm without changing its convergence property, which implements a fully interpretable unfolded model. We design a non-expansive mapping for the network architecture, ensuring convergence to a fixed point. This well-defined framework enables complete reconstruction of missing k $k$ -space data grounded in matrix completion theory, independent of fully sampled labels.

Results: Qualitative and quantitative experimental results on multi-coil MRI reconstruction demonstrate the efficacy of our self-supervised approach, showing marked improvements over existing self-supervised and traditional regularization methods, achieving results comparable to supervised learning in selected scenarios. Our method surpasses existing self-supervised approaches in reconstruction quality and also delivers competitive performance under supervised settings.

Conclusions: This work not only advances the state-of-the-art in MRI reconstruction but also enhances interpretability in deep learning applications for medical imaging.

基于矩阵补全的MRI自监督k$ k$空间插值深度展开平衡模型。
背景:磁共振成像(MRI)重建的自我监督方法由于能够解决数据采集缓慢和完全采样标签稀缺的挑战,已经引起了人们的极大兴趣。目前基于正则化的自监督技术将正则化的理论基础与深度学习的表征优势结合在一起,能够在更高的加速率下进行有效的重建,但往往缺乏可解释性,使其缺乏理论基础。目的:在本文中,我们引入了一种新的自监督方法,该方法提供了严格的理论保证和可解释的网络,同时避免了对完全采样标签的需要。方法:利用结构低秩模型中卷积神经网络与零空间之间的内在关系,有效地将网络参数集成到迭代重建过程中。我们的网络在不改变投影梯度下降算法收敛性的前提下学习梯度下降算法的梯度下降步长,实现了一个完全可解释的展开模型。我们为网络架构设计了一种非扩展映射,确保收敛到一个固定点。这个定义良好的框架能够完全重建缺失的k$ k$空间数据,基于矩阵补全理论,独立于完全采样的标签。结果:多线圈MRI重建的定性和定量实验结果证明了我们的自监督方法的有效性,与现有的自监督和传统的正则化方法相比有明显的改进,在选定的场景下取得了与监督学习相当的结果。我们的方法在重建质量方面超越了现有的自我监督方法,并且在监督设置下也提供了具有竞争力的性能。结论:这项工作不仅推进了MRI重建的最新技术,而且提高了深度学习在医学成像应用中的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信