Prethermalization for Deformed Wigner Matrices.

Annales Henri Poincare Pub Date : 2025-01-01 Epub Date: 2024-12-17 DOI:10.1007/s00023-024-01518-y
László Erdős, Joscha Henheik, Jana Reker, Volodymyr Riabov
{"title":"Prethermalization for Deformed Wigner Matrices.","authors":"László Erdős, Joscha Henheik, Jana Reker, Volodymyr Riabov","doi":"10.1007/s00023-024-01518-y","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that a class of weakly perturbed Hamiltonians of the form <math> <mrow><msub><mi>H</mi> <mi>λ</mi></msub> <mo>=</mo> <msub><mi>H</mi> <mn>0</mn></msub> <mo>+</mo> <mi>λ</mi> <mi>W</mi></mrow> </math> , with <i>W</i> being a Wigner matrix, exhibits <i>prethermalization</i>. That is, the time evolution generated by <math><msub><mi>H</mi> <mi>λ</mi></msub> </math> relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order <math><msup><mi>λ</mi> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </math> . Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix <math><msub><mi>H</mi> <mi>λ</mi></msub> </math> .</p>","PeriodicalId":72208,"journal":{"name":"Annales Henri Poincare","volume":"26 6","pages":"1991-2033"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00023-024-01518-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that a class of weakly perturbed Hamiltonians of the form H λ = H 0 + λ W , with W being a Wigner matrix, exhibits prethermalization. That is, the time evolution generated by H λ relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order λ - 2 . Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix H λ .

变形Wigner矩阵的预热化。
证明了一类弱摄动哈密顿量H λ = H 0 + λ W,其中W为Wigner矩阵,表现出预热化。也就是说,H λ产生的时间演化通过一个寿命为λ - 2阶的中间预热状态松弛到其最终热态。此外,我们还得到了一个通用的松弛公式,通过无扰动动力学和极限热态来表示扰动动力学。该证明依赖于变形Wigner矩阵H λ的双解律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信