Almost Sure GOE Fluctuations of Energy Levels for Hyperbolic Surfaces of High Genus.

Annales Henri Poincare Pub Date : 2025-01-01 Epub Date: 2025-02-22 DOI:10.1007/s00023-025-01552-4
Zeév Rudnick, Igor Wigman
{"title":"Almost Sure GOE Fluctuations of Energy Levels for Hyperbolic Surfaces of High Genus.","authors":"Zeév Rudnick, Igor Wigman","doi":"10.1007/s00023-025-01552-4","DOIUrl":null,"url":null,"abstract":"<p><p>We study the variance of a linear statistic of the Laplace eigenvalues on a hyperbolic surface, when the surface varies over the moduli space of all surfaces of fixed genus, sampled at random according to the Weil-Petersson measure. The ensemble variance of the linear statistic was recently shown to coincide with that of the corresponding statistic in the Gaussian orthogonal ensemble (GOE) of random matrix theory, in the double limit of first taking large genus and then shrinking size of the energy window. In this note, we show that in this same limit, the (smooth) energy variance for a typical surface is close to the GOE result, a feature called \"ergodicity\" in the random matrix theory literature.</p>","PeriodicalId":72208,"journal":{"name":"Annales Henri Poincare","volume":"26 6","pages":"2279-2291"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00023-025-01552-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the variance of a linear statistic of the Laplace eigenvalues on a hyperbolic surface, when the surface varies over the moduli space of all surfaces of fixed genus, sampled at random according to the Weil-Petersson measure. The ensemble variance of the linear statistic was recently shown to coincide with that of the corresponding statistic in the Gaussian orthogonal ensemble (GOE) of random matrix theory, in the double limit of first taking large genus and then shrinking size of the energy window. In this note, we show that in this same limit, the (smooth) energy variance for a typical surface is close to the GOE result, a feature called "ergodicity" in the random matrix theory literature.

高属双曲曲面能级的几乎肯定GOE涨落。
我们研究了一个双曲曲面上拉普拉斯特征值的线性统计量的方差,当曲面在所有固定属曲面的模空间上变化时,根据Weil-Petersson测量随机抽样。在先取大格后缩小能量窗的双重极限下,线性统计量的集合方差与随机矩阵理论的高斯正交集合(GOE)中相应统计量的集合方差一致。在本文中,我们证明了在相同的极限下,典型曲面的(光滑)能量方差接近于GOE结果,这一特征在随机矩阵理论文献中被称为“遍历性”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信