Data privacy in healthcare: Global challenges and solutions.

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI:10.1177/20552076251343959
Andrew Kweku Conduah, Sebastian Ofoe, Dorothy Siaw-Marfo
{"title":"Data privacy in healthcare: Global challenges and solutions.","authors":"Andrew Kweku Conduah, Sebastian Ofoe, Dorothy Siaw-Marfo","doi":"10.1177/20552076251343959","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study explores global frameworks for healthcare data privacy, focusing on the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and the Protection of Personal Information Act (POPIA). It examines the challenges of regional regulatory disparities, systemic vulnerabilities identified through major health data breach case studies, and the potential of advanced technologies to enhance privacy protections.</p><p><strong>Methods: </strong>A qualitative research approach was adopted, incorporating corpus construction and comparative analysis of legal and technical frameworks. The study also utilized case studies of significant health data breaches to identify vulnerabilities and evaluate the role of emerging technologies, such as artificial intelligence (AI) and machine learning (ML), in mitigating risks and enhancing regulatory compliance.</p><p><strong>Results: </strong>Findings indicate that GDPR, CCPA, and POPIA set high standards for data protection but reveal significant variability in enforcement and technological adoption across regions. Challenges include inconsistent definitions of sensitive data, semantic discrepancies, a lack of standardized protocols, and limited information technology infrastructure in certain jurisdictions. Advanced technologies like AI and ML promise to address these gaps by improving data harmonization and security.</p><p><strong>Conclusions: </strong>Addressing healthcare data privacy challenges requires harmonized global regulations, advanced technological tools, and international collaboration. Strengthening frameworks, enhancing information technology infrastructure, and employing semantic models and ontologies are essential for protecting sensitive data, ensuring compliance, and fostering public trust in digital healthcare systems.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251343959"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251343959","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study explores global frameworks for healthcare data privacy, focusing on the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and the Protection of Personal Information Act (POPIA). It examines the challenges of regional regulatory disparities, systemic vulnerabilities identified through major health data breach case studies, and the potential of advanced technologies to enhance privacy protections.

Methods: A qualitative research approach was adopted, incorporating corpus construction and comparative analysis of legal and technical frameworks. The study also utilized case studies of significant health data breaches to identify vulnerabilities and evaluate the role of emerging technologies, such as artificial intelligence (AI) and machine learning (ML), in mitigating risks and enhancing regulatory compliance.

Results: Findings indicate that GDPR, CCPA, and POPIA set high standards for data protection but reveal significant variability in enforcement and technological adoption across regions. Challenges include inconsistent definitions of sensitive data, semantic discrepancies, a lack of standardized protocols, and limited information technology infrastructure in certain jurisdictions. Advanced technologies like AI and ML promise to address these gaps by improving data harmonization and security.

Conclusions: Addressing healthcare data privacy challenges requires harmonized global regulations, advanced technological tools, and international collaboration. Strengthening frameworks, enhancing information technology infrastructure, and employing semantic models and ontologies are essential for protecting sensitive data, ensuring compliance, and fostering public trust in digital healthcare systems.

医疗保健中的数据隐私:全球挑战和解决方案。
目的:本研究探讨了医疗数据隐私的全球框架,重点是通用数据保护条例(GDPR)、加州消费者隐私法(CCPA)和个人信息保护法(POPIA)。报告探讨了区域监管差异带来的挑战、通过重大卫生数据泄露案例研究发现的系统性脆弱性,以及先进技术在加强隐私保护方面的潜力。方法:采用质性研究方法,结合语料库构建和法律框架与技术框架的对比分析。该研究还利用重大健康数据泄露的案例研究来识别漏洞并评估人工智能(AI)和机器学习(ML)等新兴技术在降低风险和加强法规遵从性方面的作用。结果:研究结果表明,GDPR、CCPA和POPIA为数据保护设定了高标准,但在不同地区的执法和技术采用方面存在显著差异。挑战包括敏感数据的定义不一致、语义差异、缺乏标准化协议以及某些管辖范围内有限的信息技术基础设施。人工智能和机器学习等先进技术有望通过改善数据协调和安全性来解决这些差距。结论:解决医疗保健数据隐私挑战需要统一的全球法规、先进的技术工具和国际协作。加强框架、增强信息技术基础设施以及采用语义模型和本体对于保护敏感数据、确保合规性和培养公众对数字医疗保健系统的信任至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信