Analysis of community connectivity in spatial transcriptomics data.

IF 1.5 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Juan Xie, Kyeong Joo Jung, Carter Allen, Yuzhou Chang, Subhadeep Paul, Zihai Li, Qin Ma, Dongjun Chung
{"title":"Analysis of community connectivity in spatial transcriptomics data.","authors":"Juan Xie, Kyeong Joo Jung, Carter Allen, Yuzhou Chang, Subhadeep Paul, Zihai Li, Qin Ma, Dongjun Chung","doi":"10.3389/fams.2024.1403901","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The advent of high throughput spatial transcriptomics (HST) has allowed for unprecedented characterization of spatially distinct cell communities within a tissue sample. While a wide range of computational tools exist for detecting cell communities in HST data, none allow for the characterization of community connectivity, i.e., the relative similarity of cells within and between found communities-an analysis task that can elucidate cellular dynamics in important settings such as the tumor microenvironment.</p><p><strong>Methods: </strong>To address this gap, we introduce the analysis of community connectivity (ACC), which facilitates understanding of the relative similarity of cells within and between communities. We develop a Bayesian multi-layer network model called BANYAN for the integration of spatial and gene expression information to achieve ACC.</p><p><strong>Results: </strong>We demonstrate BANYAN's ability to recover community connectivity structure via a simulation study based on real sagittal mouse brain HST data. Next, we use BANYAN to implement ACC across a wide range of real data scenarios, including 10× Visium data of melanoma brain metastases and invasive ductal carcinoma, and NanoString CosMx data of human-small-cell lung cancer, each of which reveals distinct cliques of interacting cell sub-populations. An R package banyan is available at https://github.com/dongjunchung/banyan.</p>","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":"10 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2024.1403901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The advent of high throughput spatial transcriptomics (HST) has allowed for unprecedented characterization of spatially distinct cell communities within a tissue sample. While a wide range of computational tools exist for detecting cell communities in HST data, none allow for the characterization of community connectivity, i.e., the relative similarity of cells within and between found communities-an analysis task that can elucidate cellular dynamics in important settings such as the tumor microenvironment.

Methods: To address this gap, we introduce the analysis of community connectivity (ACC), which facilitates understanding of the relative similarity of cells within and between communities. We develop a Bayesian multi-layer network model called BANYAN for the integration of spatial and gene expression information to achieve ACC.

Results: We demonstrate BANYAN's ability to recover community connectivity structure via a simulation study based on real sagittal mouse brain HST data. Next, we use BANYAN to implement ACC across a wide range of real data scenarios, including 10× Visium data of melanoma brain metastases and invasive ductal carcinoma, and NanoString CosMx data of human-small-cell lung cancer, each of which reveals distinct cliques of interacting cell sub-populations. An R package banyan is available at https://github.com/dongjunchung/banyan.

空间转录组学数据中的社区连通性分析。
导语:高通量空间转录组学(HST)的出现使得对组织样本中空间不同的细胞群落进行前所未有的表征成为可能。虽然存在广泛的计算工具来检测HST数据中的细胞群落,但没有一个允许描述群落连通性,即所发现的群落内部和之间细胞的相对相似性,这是一项分析任务,可以阐明重要设置(如肿瘤微环境)中的细胞动力学。方法:为了解决这一差距,我们引入了社区连通性(ACC)的分析,这有助于理解社区内部和社区之间细胞的相对相似性。我们开发了一个名为BANYAN的贝叶斯多层网络模型,用于整合空间和基因表达信息来实现ACC。结果:我们通过基于真实矢状鼠脑HST数据的模拟研究证明了BANYAN恢复社区连接结构的能力。接下来,我们使用BANYAN在广泛的真实数据场景中实现ACC,包括黑色素瘤脑转移和浸润性导管癌的10x Visium数据,以及人类小细胞肺癌的NanoString CosMx数据,每个数据都揭示了相互作用细胞亚群的不同派系。R包榕树可在https://github.com/dongjunchung/banyan上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信