{"title":"Discovery of novel 1,3,4-oxadiazole derivatives as anticancer agents targeting thymidine phosphorylase: pharmacophore modelling, virtual screening, molecular docking, ADMET and DFT analysis.","authors":"A Murmu, B W Matore, P Banjare, P P Roy, J Singh","doi":"10.1080/1062936X.2025.2512385","DOIUrl":null,"url":null,"abstract":"<p><p>Thymidine phosphorylase (TP) is a key enzyme involved in angiogenesis, tumour growth and closely linked to cancer progression and metastasis. This study represents the first comprehensive 3D-QSAR pharmacophore-based approach to identifying potential 1,3,4-oxadiazole derivatives as targeted TPIs for anticancer therapy. A dataset of 76 analogues with an experimental IC<sub>50</sub> values was used to develop pharmacophore models. The BEST conformation method identified an optimal model (Hypo 2), featuring HBA, HBD and RA as key activity determinants with strong statistical validation (<i>r</i><sup>2</sup> = 0.69, ΔCost = 77.41, <i>Q</i><sup>2</sup> = 0.68 and MAE = 0.23). A virtual screening of 12,353 drug-like 1,3,4-oxadiazole compounds from PubChem and ChEMBL yielded 329 potential TPIs (IC<sub>50</sub> < 10 μM). MD Docking using CDOCKER (PDB ID: 1UOU) identified the top hits interacting with critical TP residues (Thr151, Gly152, Lys221, Ser217, Thr118). ADMET analysis confirmed their drug-likeness with no significant toxicity. ChEMBL2058305 exhibited the highest binding stability (-85.508 kcal/mol), the lowest HOMO-LUMO gap (0.066 ha), and superior TP affinity, highlighting its potential as a promising TP inhibitor for anticancer therapy. This first report with integration of pharmacophore modelling, virtual screening, MD Docking, ADMET, MMGBSA and DFT will be beneficial for the discovery of novel TPIs.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1-27"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2512385","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thymidine phosphorylase (TP) is a key enzyme involved in angiogenesis, tumour growth and closely linked to cancer progression and metastasis. This study represents the first comprehensive 3D-QSAR pharmacophore-based approach to identifying potential 1,3,4-oxadiazole derivatives as targeted TPIs for anticancer therapy. A dataset of 76 analogues with an experimental IC50 values was used to develop pharmacophore models. The BEST conformation method identified an optimal model (Hypo 2), featuring HBA, HBD and RA as key activity determinants with strong statistical validation (r2 = 0.69, ΔCost = 77.41, Q2 = 0.68 and MAE = 0.23). A virtual screening of 12,353 drug-like 1,3,4-oxadiazole compounds from PubChem and ChEMBL yielded 329 potential TPIs (IC50 < 10 μM). MD Docking using CDOCKER (PDB ID: 1UOU) identified the top hits interacting with critical TP residues (Thr151, Gly152, Lys221, Ser217, Thr118). ADMET analysis confirmed their drug-likeness with no significant toxicity. ChEMBL2058305 exhibited the highest binding stability (-85.508 kcal/mol), the lowest HOMO-LUMO gap (0.066 ha), and superior TP affinity, highlighting its potential as a promising TP inhibitor for anticancer therapy. This first report with integration of pharmacophore modelling, virtual screening, MD Docking, ADMET, MMGBSA and DFT will be beneficial for the discovery of novel TPIs.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.