{"title":"Biosynthesis of fatty aldehydes and alcohols in the eye and their role in meibogenesis.","authors":"Seher Yuksel, Igor A Butovich","doi":"10.1016/j.jbc.2025.110330","DOIUrl":null,"url":null,"abstract":"<p><p>Fatty alcohols (FAlc) and aldehydes (FAld) are essential intermediates/precursors in the biosynthesis of lipids. However, elevated FAld levels were shown to be geno- and cytotoxic, and, thus, requiring conversion into less toxic FAlc and fatty acids (FA). An increase in FAlc and FAld in tissues of patients with Sjögren-Larsson syndrome was reported before and repeatedly linked to inactivation of ALDH3A2, which oxidizes FAld in FA. Recently, we hypothesized that another group of enzymes, namely SDR16C5/SDR16C6 (EC 1.1.1.105), could control the balance between FA, FAlc, and FAld via a separate mechanism. In this study, we assessed the in vivo biosynthesis of FAlc and FAld in mammals using Meibomian glands (MG) of wild type (WT) and Sdr16c5/Sdr16c6-null (Hom) mice as models. Lipids were extracted from MG of experimental animals and analyzed using LC/MS. Because of high reactivity and instability of FAld, the compounds were initially converted to stable, sodium borohydride-reduced 3-aminopyridine conjugates, while FAlc were analyzed as N-alkyl pyridinium ions. A wide range of saturated and unsaturated FAld, FAlc, and FA ranging from C<sub>3</sub> to C<sub>28</sub> and longer were found in MG of mice of both genotypes. Our experiments revealed a multifold upregulation of almost all detected straight chain, but not branched, FAlc in MG lipidomes of Hom mice, which implied a previously unknown ability of SDR16C5/SDR16C6 to oxidize a wide range of FAlc in FAld in vivo. We have concluded that SDR16C5/SDR16C6 play a central, and selective, role in FA/FAlc/FAld metabolism in vivo, and proposed a generalized mechanism of these reactions.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110330"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110330","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fatty alcohols (FAlc) and aldehydes (FAld) are essential intermediates/precursors in the biosynthesis of lipids. However, elevated FAld levels were shown to be geno- and cytotoxic, and, thus, requiring conversion into less toxic FAlc and fatty acids (FA). An increase in FAlc and FAld in tissues of patients with Sjögren-Larsson syndrome was reported before and repeatedly linked to inactivation of ALDH3A2, which oxidizes FAld in FA. Recently, we hypothesized that another group of enzymes, namely SDR16C5/SDR16C6 (EC 1.1.1.105), could control the balance between FA, FAlc, and FAld via a separate mechanism. In this study, we assessed the in vivo biosynthesis of FAlc and FAld in mammals using Meibomian glands (MG) of wild type (WT) and Sdr16c5/Sdr16c6-null (Hom) mice as models. Lipids were extracted from MG of experimental animals and analyzed using LC/MS. Because of high reactivity and instability of FAld, the compounds were initially converted to stable, sodium borohydride-reduced 3-aminopyridine conjugates, while FAlc were analyzed as N-alkyl pyridinium ions. A wide range of saturated and unsaturated FAld, FAlc, and FA ranging from C3 to C28 and longer were found in MG of mice of both genotypes. Our experiments revealed a multifold upregulation of almost all detected straight chain, but not branched, FAlc in MG lipidomes of Hom mice, which implied a previously unknown ability of SDR16C5/SDR16C6 to oxidize a wide range of FAlc in FAld in vivo. We have concluded that SDR16C5/SDR16C6 play a central, and selective, role in FA/FAlc/FAld metabolism in vivo, and proposed a generalized mechanism of these reactions.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.