Maurício B Estradiote, A Gareth A Nisbet, Rafaela F S Penacchio, Marcus A R Miranda, Guilherme A Calligaris, Sérgio L Morelhão
{"title":"Simulation of bright and dark diffuse multiple scattering lines in high-flux synchrotron X-ray experiments.","authors":"Maurício B Estradiote, A Gareth A Nisbet, Rafaela F S Penacchio, Marcus A R Miranda, Guilherme A Calligaris, Sérgio L Morelhão","doi":"10.1107/S1600576725003553","DOIUrl":null,"url":null,"abstract":"<p><p>We present a theoretical framework for understanding diffuse multiple scattering (DMS) in single crystals, focusing on diffuse scattering Bragg channels. These channels, when probed with high-flux low-divergence monochromatic synchrotron X-rays, provide well defined visualizations of Bragg cones. Our main contribution lies in modelling the intensity distribution along these lines by considering diffuse scattering (DS) around individual reciprocal-lattice nodes. The model incorporates contributions from both general DS and mosaicity, elucidating their connection to second-order scattering events. This comprehensive approach advances our understanding of DMS phenomena, enabling their use as probes for complex material behaviour, particularly under extreme conditions.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"859-868"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725003553","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
We present a theoretical framework for understanding diffuse multiple scattering (DMS) in single crystals, focusing on diffuse scattering Bragg channels. These channels, when probed with high-flux low-divergence monochromatic synchrotron X-rays, provide well defined visualizations of Bragg cones. Our main contribution lies in modelling the intensity distribution along these lines by considering diffuse scattering (DS) around individual reciprocal-lattice nodes. The model incorporates contributions from both general DS and mosaicity, elucidating their connection to second-order scattering events. This comprehensive approach advances our understanding of DMS phenomena, enabling their use as probes for complex material behaviour, particularly under extreme conditions.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.