{"title":"Individual dislocation identification in dark-field X-ray microscopy.","authors":"Sina Borgi, Grethe Winther, Henning Friis Poulsen","doi":"10.1107/S1600576725002614","DOIUrl":null,"url":null,"abstract":"<p><p>Dark-field X-ray microscopy (DFXM) has recently been introduced for 3D mapping of dislocations and their strain fields in bulk samples and with high angular resolution (10<sup>-4</sup>°). In this work, we investigate the minimum information needed to identify the type of an isolated dislocation, parameterized by its Burgers vector, line direction and slip plane. Forward projections of DFXM weak-beam images are generated for a face-centred cubic symmetry using geometrical optics simulations with realistic noise levels. Cross correlating one DFXM image with similar images representing all possible combinations of dislocation types, we find that the cross-correlation values for all non-identical images are below 0.7, clearly demonstrating the feasibility of this method of identification. Experimental DFXM images of isolated dislocations are compared with forward-modelled ones. Complete identification is demonstrated, with the exception of the sign of the Burgers vector. The performance improvement obtained by acquiring data from a 3D volume is explored. This work verifies the use of geometrical optics to simulate DFXM weak-beam images and supports the interfacing of DFXM data with discrete dislocation dynamics simulations.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"813-821"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725002614","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Dark-field X-ray microscopy (DFXM) has recently been introduced for 3D mapping of dislocations and their strain fields in bulk samples and with high angular resolution (10-4°). In this work, we investigate the minimum information needed to identify the type of an isolated dislocation, parameterized by its Burgers vector, line direction and slip plane. Forward projections of DFXM weak-beam images are generated for a face-centred cubic symmetry using geometrical optics simulations with realistic noise levels. Cross correlating one DFXM image with similar images representing all possible combinations of dislocation types, we find that the cross-correlation values for all non-identical images are below 0.7, clearly demonstrating the feasibility of this method of identification. Experimental DFXM images of isolated dislocations are compared with forward-modelled ones. Complete identification is demonstrated, with the exception of the sign of the Burgers vector. The performance improvement obtained by acquiring data from a 3D volume is explored. This work verifies the use of geometrical optics to simulate DFXM weak-beam images and supports the interfacing of DFXM data with discrete dislocation dynamics simulations.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.