{"title":"stGuide advances label transfer in spatial transcriptomics through attention-based supervised graph representation learning.","authors":"Yupeng Xu, Hao Dai, Jinwang Feng, Keren Xu, Qiu Wang, Pingting Gao, Chunman Zuo","doi":"10.3389/fgene.2025.1566675","DOIUrl":null,"url":null,"abstract":"<p><p>The growing availability of spatial transcriptomics data offers key resources for annotating query datasets using reference datasets. However, batch effects, unbalanced reference annotations, and tissue heterogeneity pose significant challenges to alignment analysis. Here, we present stGuide, an attention-based supervised graph learning model designed for cross-slice alignment and efficient label transfer from reference to query datasets. stGuide leverages supervised representations guided by reference annotations to map query slices into a shared embedding space using an attention-based mechanism. It then assigns spot-level labels by incorporating information from the nearest neighbors in the learned representation. Using human dorsolateral prefrontal cortex and breast cancer datasets, stGuide demonstrates its capabilities by (i) producing category-guided, low-dimensional features with well-mixed slices; (ii) transferring labels effectively across heterogeneous tissues; and (iii) uncovering relationships between clusters. Comparisons with state-of-the-art methods demonstrate that stGuide consistently outperforms existing approaches, positioning it as a robust and versatile tool for spatial transcriptomics analysis.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1566675"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1566675","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing availability of spatial transcriptomics data offers key resources for annotating query datasets using reference datasets. However, batch effects, unbalanced reference annotations, and tissue heterogeneity pose significant challenges to alignment analysis. Here, we present stGuide, an attention-based supervised graph learning model designed for cross-slice alignment and efficient label transfer from reference to query datasets. stGuide leverages supervised representations guided by reference annotations to map query slices into a shared embedding space using an attention-based mechanism. It then assigns spot-level labels by incorporating information from the nearest neighbors in the learned representation. Using human dorsolateral prefrontal cortex and breast cancer datasets, stGuide demonstrates its capabilities by (i) producing category-guided, low-dimensional features with well-mixed slices; (ii) transferring labels effectively across heterogeneous tissues; and (iii) uncovering relationships between clusters. Comparisons with state-of-the-art methods demonstrate that stGuide consistently outperforms existing approaches, positioning it as a robust and versatile tool for spatial transcriptomics analysis.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.