Yajuan Yin, Mei Wei, Xiufang Jiang, Mei Liu, Xiaocui Shi, Xiao Zhang, Le Wang, Gang Liu, Mingqi Zheng, Fangfang Ma
{"title":"Gut microbiota-derived trimethylamine-N-oxide inhibits SIRT1 to regulate SM22α-mediated smooth muscle cell inflammation and promote atherosclerosis progression","authors":"Yajuan Yin, Mei Wei, Xiufang Jiang, Mei Liu, Xiaocui Shi, Xiao Zhang, Le Wang, Gang Liu, Mingqi Zheng, Fangfang Ma","doi":"10.1002/ccs3.70021","DOIUrl":null,"url":null,"abstract":"<p>Atherosclerosis (AS) is a prevalent cardiovascular disease, and emerging evidence highlights the critical role of gut microbiota in its development. Trimethylamine-N-oxide (TMAO), a metabolite derived from gut microbiota, is thought to promote AS progression by regulating smooth muscle protein 22-alpha (SM22α)-mediated inflammation in vascular smooth muscle cells. This study aims to explore the molecular mechanisms of TMAO in AS through multi-omics analysis, particularly its effects on SIRT1 inhibition and SM22α modulation. 16S ribosomal RNA sequencing revealed an altered gut microbiota composition in AS mice, characterized by increased Bacteroides and decreased Firmicutes. Metabolomics analysis indicated elevated levels of TMAO in AS mice. Transcriptomic data and cell experiments further confirmed that TMAO promotes AS by regulating SM22α-mediated inflammation via SIRT1 regulation. These findings suggest that TMAO accelerates progression through the SIRT1 and SM22α-related pathways, offering novel therapeutic targets for AS intervention.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis (AS) is a prevalent cardiovascular disease, and emerging evidence highlights the critical role of gut microbiota in its development. Trimethylamine-N-oxide (TMAO), a metabolite derived from gut microbiota, is thought to promote AS progression by regulating smooth muscle protein 22-alpha (SM22α)-mediated inflammation in vascular smooth muscle cells. This study aims to explore the molecular mechanisms of TMAO in AS through multi-omics analysis, particularly its effects on SIRT1 inhibition and SM22α modulation. 16S ribosomal RNA sequencing revealed an altered gut microbiota composition in AS mice, characterized by increased Bacteroides and decreased Firmicutes. Metabolomics analysis indicated elevated levels of TMAO in AS mice. Transcriptomic data and cell experiments further confirmed that TMAO promotes AS by regulating SM22α-mediated inflammation via SIRT1 regulation. These findings suggest that TMAO accelerates progression through the SIRT1 and SM22α-related pathways, offering novel therapeutic targets for AS intervention.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.