{"title":"SOCT: Secure Outsourcing Computation Toolkit Using Threshold ElGamal Algorithm","authors":"Sen Hu;Shang Ci;Donghai Guan;Çetin Kaya Koç","doi":"10.1109/TCC.2025.3561313","DOIUrl":null,"url":null,"abstract":"Cloud computing offers inexpensive and scalable solutions for data processing, however privacy concerns often hinder the outsourcing of sensitive information. Homomorphic encryption provides a promising approach for secure computations over encrypted data. However, existing models often rely on restrictive assumptions, such as semi-honest adversaries and inaccessible public data. To address these limitations, we introduce the Secure Outsourcing Computation Toolkit (SOCT), which is a novel framework based on the threshold ElGamal cryptosystem. The toolkit employs a dual-server decryption architecture using a (2,2) threshold additively homomorphic ElGamal (TAHEG) algorithm. This architecture ensures that ciphertexts can be decrypted only with the cooperation of both servers, mitigating the risk of data breaches. The TAHEG algorithm requires the input of a secret key for every decryption operation, preventing unauthorized access to plaintext data. Moreover, the key generation process does not burden users with generating or distributing partial secret keys. We provide rigorous security proofs for our threshold ElGamal cryptosystem and associated secure computation functions. Experimental results demonstrate that SOCT achieves significant efficiency gains compared to existing toolkits, making it a practical choice for privacy-preserving data outsourcing.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 2","pages":"711-720"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965848/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud computing offers inexpensive and scalable solutions for data processing, however privacy concerns often hinder the outsourcing of sensitive information. Homomorphic encryption provides a promising approach for secure computations over encrypted data. However, existing models often rely on restrictive assumptions, such as semi-honest adversaries and inaccessible public data. To address these limitations, we introduce the Secure Outsourcing Computation Toolkit (SOCT), which is a novel framework based on the threshold ElGamal cryptosystem. The toolkit employs a dual-server decryption architecture using a (2,2) threshold additively homomorphic ElGamal (TAHEG) algorithm. This architecture ensures that ciphertexts can be decrypted only with the cooperation of both servers, mitigating the risk of data breaches. The TAHEG algorithm requires the input of a secret key for every decryption operation, preventing unauthorized access to plaintext data. Moreover, the key generation process does not burden users with generating or distributing partial secret keys. We provide rigorous security proofs for our threshold ElGamal cryptosystem and associated secure computation functions. Experimental results demonstrate that SOCT achieves significant efficiency gains compared to existing toolkits, making it a practical choice for privacy-preserving data outsourcing.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.