RLDR: Reinforcement Learning-Based Fast Data Recovery in Cloud-of-Clouds Storage Systems

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiajie Shen;Bochun Wu;Maoyi Wang;Sai Zou;Laizhong Cui;Wei Ni
{"title":"RLDR: Reinforcement Learning-Based Fast Data Recovery in Cloud-of-Clouds Storage Systems","authors":"Jiajie Shen;Bochun Wu;Maoyi Wang;Sai Zou;Laizhong Cui;Wei Ni","doi":"10.1109/TCC.2025.3546528","DOIUrl":null,"url":null,"abstract":"Cloud-of-clouds storage systems are widely used in online applications, where user data are encrypted, encoded, and stored in multiple clouds. When some cloud nodes fail, the storage systems can reconstruct the lost data and store it in the substitute nodes. It is a challenge to reduce the latency of data recovery to ensure data reliability. In this paper, we adopt a Reinforcement Learning-based Data Recovery (RLDR) approach to reduce the regeneration time. By employing the Monte-Carlo method, our approach can construct the tree-topology-based regeneration process, a.k.a. regeneration tree, to effectively reduce the regeneration time. Through rigorous analysis, we apply the information flow graph to optimize the inter-cloud traffic for a given regeneration tree. To verify the merit of RLDR, We conduct extensive experiments on real-world traces. Experiments demonstrate that RLDR can significantly accelerate the regeneration process. Specifically, RLDR can reduce the regeneration time by up to 92% and increase the throughput by up to twelve-fold, compared to the prior art.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 2","pages":"526-543"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10906478/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud-of-clouds storage systems are widely used in online applications, where user data are encrypted, encoded, and stored in multiple clouds. When some cloud nodes fail, the storage systems can reconstruct the lost data and store it in the substitute nodes. It is a challenge to reduce the latency of data recovery to ensure data reliability. In this paper, we adopt a Reinforcement Learning-based Data Recovery (RLDR) approach to reduce the regeneration time. By employing the Monte-Carlo method, our approach can construct the tree-topology-based regeneration process, a.k.a. regeneration tree, to effectively reduce the regeneration time. Through rigorous analysis, we apply the information flow graph to optimize the inter-cloud traffic for a given regeneration tree. To verify the merit of RLDR, We conduct extensive experiments on real-world traces. Experiments demonstrate that RLDR can significantly accelerate the regeneration process. Specifically, RLDR can reduce the regeneration time by up to 92% and increase the throughput by up to twelve-fold, compared to the prior art.
基于强化学习的云-云存储系统快速数据恢复
云的云存储系统被广泛应用于在线应用中,用户数据被加密、编码并存储在多个云中。当某些云节点出现故障时,存储系统可以重建丢失的数据并将其存储在替代节点中。如何降低数据恢复的延迟,保证数据的可靠性是一个挑战。在本文中,我们采用了一种基于强化学习的数据恢复(RLDR)方法来减少再生时间。该方法通过蒙特卡罗方法构建基于树拓扑的再生过程,即再生树,有效地缩短了再生时间。通过严格的分析,我们应用信息流图来优化给定再生树的云间流量。为了验证RLDR的优点,我们在现实世界的轨迹上进行了大量的实验。实验表明,RLDR能显著加快再生过程。具体来说,与现有技术相比,RLDR可以将再生时间缩短92%,并将吞吐量提高12倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信