Revisiting Edge Perturbation for Graph Neural Network in Graph Data Augmentation and Attack

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Liu;Yuxiang Zhang;Meng Wu;Mingyu Yan;Kun He;Wei Yan;Shirui Pan;Xiaochun Ye;Dongrui Fan
{"title":"Revisiting Edge Perturbation for Graph Neural Network in Graph Data Augmentation and Attack","authors":"Xin Liu;Yuxiang Zhang;Meng Wu;Mingyu Yan;Kun He;Wei Yan;Shirui Pan;Xiaochun Ye;Dongrui Fan","doi":"10.1109/TKDE.2025.3565306","DOIUrl":null,"url":null,"abstract":"Edge perturbation is a basic method to modify graph structures. It can be categorized into two veins based on their effects on the performance of graph neural networks (GNNs), i.e., graph data augmentation and attack. Surprisingly, both veins of edge perturbation methods employ the same operations, yet yield opposite effects on GNNs’ accuracy. A distinct boundary between these methods in using edge perturbation has never been clearly defined. Consequently, inappropriate perturbations may lead to undesirable outcomes, necessitating precise adjustments to achieve desired effects. Therefore, questions of “why edge perturbation has a two-faced effect?” and “what makes edge perturbation flexible and effective?” still remain unanswered. In this paper, we will answer these questions by proposing a unified formulation and establishing a quantizable boundary between two categories of edge perturbation methods. Specifically, we conduct experiments to elucidate the differences and similarities between these methods and theoretically unify the workflow of these methods by casting it to one optimization problem. Then, we devise Edge Priority Detector (EPD) to generate a novel priority metric, bridging these methods up in the workflow. Experiments show that EPD can make augmentation or attack flexibly and achieve comparable or superior performance to other counterparts with less time overhead.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 7","pages":"4225-4238"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980208/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Edge perturbation is a basic method to modify graph structures. It can be categorized into two veins based on their effects on the performance of graph neural networks (GNNs), i.e., graph data augmentation and attack. Surprisingly, both veins of edge perturbation methods employ the same operations, yet yield opposite effects on GNNs’ accuracy. A distinct boundary between these methods in using edge perturbation has never been clearly defined. Consequently, inappropriate perturbations may lead to undesirable outcomes, necessitating precise adjustments to achieve desired effects. Therefore, questions of “why edge perturbation has a two-faced effect?” and “what makes edge perturbation flexible and effective?” still remain unanswered. In this paper, we will answer these questions by proposing a unified formulation and establishing a quantizable boundary between two categories of edge perturbation methods. Specifically, we conduct experiments to elucidate the differences and similarities between these methods and theoretically unify the workflow of these methods by casting it to one optimization problem. Then, we devise Edge Priority Detector (EPD) to generate a novel priority metric, bridging these methods up in the workflow. Experiments show that EPD can make augmentation or attack flexibly and achieve comparable or superior performance to other counterparts with less time overhead.
图数据增强与攻击中图神经网络的边摄动问题
边摄动是修改图结构的一种基本方法。根据对图神经网络(gnn)性能的影响,可以将其分为两类,即图数据增强和攻击。令人惊讶的是,两种边缘摄动方法采用相同的操作,但对gnn的精度产生相反的影响。这些使用边缘摄动的方法之间的明显边界从未被明确定义过。因此,不适当的扰动可能导致不期望的结果,需要精确的调整来达到预期的效果。因此,“为什么边缘摄动具有双面效应?”和“是什么使边缘摄动灵活有效?”的问题仍然没有答案。在本文中,我们将通过提出一个统一的公式并在两类边缘摄动方法之间建立一个可量化的边界来回答这些问题。具体而言,我们通过实验来阐明这些方法之间的异同,并将这些方法的工作流程从理论上统一为一个优化问题。然后,我们设计了边缘优先级检测器(EPD)来生成一个新的优先级度量,将这些方法桥接在工作流程中。实验表明,EPD可以灵活地进行增强或攻击,在较少的时间开销下达到与其他同类系统相当或更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信