{"title":"High-dimensional data analysis: Change point detection via bootstrap MOSUM","authors":"Houlin Zhou, Hanbing Zhu, Xuejun Wang","doi":"10.1016/j.jmva.2025.105449","DOIUrl":null,"url":null,"abstract":"<div><div>Change point detection in high-dimensional data has become a significant area of research in the era of big data. In this paper, we propose a novel test statistic for high-dimensional change point detection based on the bootstrap moving sum (MOSUM) method. We derive the theoretical properties of the proposed statistic and establish the consistency of the change point location estimator. Numerical simulation results demonstrate that our method outperforms the bootstrap cumulative sum (CUSUM) test statistic. Finally, we apply the proposed method to empirically analyze a real-world data set.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"209 ","pages":"Article 105449"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000442","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Change point detection in high-dimensional data has become a significant area of research in the era of big data. In this paper, we propose a novel test statistic for high-dimensional change point detection based on the bootstrap moving sum (MOSUM) method. We derive the theoretical properties of the proposed statistic and establish the consistency of the change point location estimator. Numerical simulation results demonstrate that our method outperforms the bootstrap cumulative sum (CUSUM) test statistic. Finally, we apply the proposed method to empirically analyze a real-world data set.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.