High-dimensional data analysis: Change point detection via bootstrap MOSUM

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Houlin Zhou, Hanbing Zhu, Xuejun Wang
{"title":"High-dimensional data analysis: Change point detection via bootstrap MOSUM","authors":"Houlin Zhou,&nbsp;Hanbing Zhu,&nbsp;Xuejun Wang","doi":"10.1016/j.jmva.2025.105449","DOIUrl":null,"url":null,"abstract":"<div><div>Change point detection in high-dimensional data has become a significant area of research in the era of big data. In this paper, we propose a novel test statistic for high-dimensional change point detection based on the bootstrap moving sum (MOSUM) method. We derive the theoretical properties of the proposed statistic and establish the consistency of the change point location estimator. Numerical simulation results demonstrate that our method outperforms the bootstrap cumulative sum (CUSUM) test statistic. Finally, we apply the proposed method to empirically analyze a real-world data set.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"209 ","pages":"Article 105449"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000442","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Change point detection in high-dimensional data has become a significant area of research in the era of big data. In this paper, we propose a novel test statistic for high-dimensional change point detection based on the bootstrap moving sum (MOSUM) method. We derive the theoretical properties of the proposed statistic and establish the consistency of the change point location estimator. Numerical simulation results demonstrate that our method outperforms the bootstrap cumulative sum (CUSUM) test statistic. Finally, we apply the proposed method to empirically analyze a real-world data set.
高维数据分析:通过自举MOSUM检测变点
高维数据变化点检测已成为大数据时代的一个重要研究领域。本文提出了一种新的基于自举移动和(MOSUM)方法的高维变化点检测检验统计量。我们推导了所提统计量的理论性质,并建立了变点位置估计量的相合性。数值仿真结果表明,该方法优于自举累积和(CUSUM)检验统计量。最后,我们将提出的方法应用于实际数据集的实证分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信