Zongsheng Zheng , Ziyuan Shao , Yi Yu , Lu Lu , Shilin Gao
{"title":"Cramér–Rao Lower Bound of adaptive filtering algorithms for acoustic echo cancellation","authors":"Zongsheng Zheng , Ziyuan Shao , Yi Yu , Lu Lu , Shilin Gao","doi":"10.1016/j.sigpro.2025.110111","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous adaptive filtering algorithms have been proposed for acoustic echo cancellation. However, whether the performance of the algorithms approaches the optimal performance or if there has been intentionally overstated remains challenging to evaluate. Fortunately, the Cramér–Rao Lower Bound (CRLB) provides a theoretical minimum variance for any unbiased estimator under given observational data and statistical models. This paper derives the CRLB of adaptive filtering algorithms for acoustic echo cancellation (AEC), in which the generalized Gaussian distribution (GGD) is utilized to model the Gaussian/non-Gaussian background noises. To accelerate the CRLB calculation process, the recursive resolution of the CRLB is presented by using the matrix inversion lemma, and the computational complexity is also analyzed. The derivation results indicate that CRLB for AEC model depends on the acoustic input (i.e., speaker’s voice) and the statistical properties of GGD noise but is unaffected by the channel sparsity. The CRLB derived in this paper can serve as a benchmark to evaluate whether the performance of the adaptive filtering algorithms is optimal and to exclude some adaptive filtering algorithms that deliberately exaggerate their performance.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110111"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425002257","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous adaptive filtering algorithms have been proposed for acoustic echo cancellation. However, whether the performance of the algorithms approaches the optimal performance or if there has been intentionally overstated remains challenging to evaluate. Fortunately, the Cramér–Rao Lower Bound (CRLB) provides a theoretical minimum variance for any unbiased estimator under given observational data and statistical models. This paper derives the CRLB of adaptive filtering algorithms for acoustic echo cancellation (AEC), in which the generalized Gaussian distribution (GGD) is utilized to model the Gaussian/non-Gaussian background noises. To accelerate the CRLB calculation process, the recursive resolution of the CRLB is presented by using the matrix inversion lemma, and the computational complexity is also analyzed. The derivation results indicate that CRLB for AEC model depends on the acoustic input (i.e., speaker’s voice) and the statistical properties of GGD noise but is unaffected by the channel sparsity. The CRLB derived in this paper can serve as a benchmark to evaluate whether the performance of the adaptive filtering algorithms is optimal and to exclude some adaptive filtering algorithms that deliberately exaggerate their performance.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.