GPPT: Graph pyramid pooling transformer for visual scene

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhi-Peng Li , Wen-Jian Liu , Xin Sun , Yi-Jie Pan , Valeriya Gribova , Vladimir Fedorovich Filaretov , Anthony G. Cohn , De-Shuang Huang
{"title":"GPPT: Graph pyramid pooling transformer for visual scene","authors":"Zhi-Peng Li ,&nbsp;Wen-Jian Liu ,&nbsp;Xin Sun ,&nbsp;Yi-Jie Pan ,&nbsp;Valeriya Gribova ,&nbsp;Vladimir Fedorovich Filaretov ,&nbsp;Anthony G. Cohn ,&nbsp;De-Shuang Huang","doi":"10.1016/j.neucom.2025.130729","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of computer vision, network architectures are critical to the performance of tasks. Vision Graph Neural Network (ViG) has shown remarkable results in handling various vision tasks with their unique characteristics. However, the lack of multi-scale information in ViG limits its expressive capability. To address this challenge, we propose a Graph Pyramid Pooling Transformer (GPPT), which aims to enhance the performance of the model by introducing multi-scale feature learning. The core advantage of GPPT is its ability to effectively capture and fuse feature information at different scales. Specifically, it first generates multi-level pooled graphs using a graph pyramid pooling structure. Next, it encodes features at each scale using a weight-shared Graph Convolutional Neural Network (GCN). Then, it enhances information exchange across scales through a cross-scale feature fusion mechanism. Finally, it captures long-range node dependencies using a transformer module. The experimental results demonstrate that GPPT achieves exceptional performance across various visual scenes, including image classification, and object detection, highlighting its generality and validity.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"647 ","pages":"Article 130729"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014018","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of computer vision, network architectures are critical to the performance of tasks. Vision Graph Neural Network (ViG) has shown remarkable results in handling various vision tasks with their unique characteristics. However, the lack of multi-scale information in ViG limits its expressive capability. To address this challenge, we propose a Graph Pyramid Pooling Transformer (GPPT), which aims to enhance the performance of the model by introducing multi-scale feature learning. The core advantage of GPPT is its ability to effectively capture and fuse feature information at different scales. Specifically, it first generates multi-level pooled graphs using a graph pyramid pooling structure. Next, it encodes features at each scale using a weight-shared Graph Convolutional Neural Network (GCN). Then, it enhances information exchange across scales through a cross-scale feature fusion mechanism. Finally, it captures long-range node dependencies using a transformer module. The experimental results demonstrate that GPPT achieves exceptional performance across various visual scenes, including image classification, and object detection, highlighting its generality and validity.
GPPT:图形金字塔池变压器的视觉场景
在计算机视觉领域,网络体系结构对任务的性能至关重要。视觉图神经网络(ViG)以其独特的特性在处理各种视觉任务方面显示出显著的效果。然而,多尺度信息的缺乏限制了ViG的表达能力。为了解决这一挑战,我们提出了一个图金字塔池变压器(GPPT),旨在通过引入多尺度特征学习来提高模型的性能。GPPT的核心优势在于能够有效地捕捉和融合不同尺度的特征信息。具体来说,它首先使用图金字塔池化结构生成多级池化图。接下来,它使用权重共享的图卷积神经网络(GCN)对每个尺度上的特征进行编码。然后,通过跨尺度特征融合机制增强跨尺度信息交换;最后,它使用转换器模块捕获远程节点依赖关系。实验结果表明,GPPT在各种视觉场景下,包括图像分类和目标检测,都取得了优异的性能,突出了其通用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信