Secure kNN for Distributed Cloud Environment Using Fully Homomorphic Encryption

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuuya Fukuchi;Sota Hashimoto;Kazuya Sakai;Satoshi Fukumoto;Min-Te Sun;Wei-Shinn Ku
{"title":"Secure kNN for Distributed Cloud Environment Using Fully Homomorphic Encryption","authors":"Yuuya Fukuchi;Sota Hashimoto;Kazuya Sakai;Satoshi Fukumoto;Min-Te Sun;Wei-Shinn Ku","doi":"10.1109/TCC.2025.3561586","DOIUrl":null,"url":null,"abstract":"Privacy-preserving k-nearest neighbor (PPkNN) classification for multiple clouds enables categorizing queried data into a class in keeping with data privacy, where the database and key servers jointly perform cryptographic operations. The existing solutions, unfortunately, take a long time and incur a large amount of traffic between the database and key servers. Therefore, in this article, we propose a fast and secure kNN classification protocol, namely FSkNN, over distributed databases deployed in multiple clouds under the semi-honest model. Particularly, we focus on optimizing the network-related operations during kNN classification. That is, the proposed cryptographic protocol reduces the number of interactions between the servers by using a fully homomorphic encryption scheme and eliminates unnecessary traffic by applying mathematical techniques. In addition, the indistinguishability-based security of FSkNN is proven. We implemented FSkNN with C++ and the testbed experiments demonstrate that the proposed scheme significantly facilitates the query response time and reduces the communication cost.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 2","pages":"721-736"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10966159/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy-preserving k-nearest neighbor (PPkNN) classification for multiple clouds enables categorizing queried data into a class in keeping with data privacy, where the database and key servers jointly perform cryptographic operations. The existing solutions, unfortunately, take a long time and incur a large amount of traffic between the database and key servers. Therefore, in this article, we propose a fast and secure kNN classification protocol, namely FSkNN, over distributed databases deployed in multiple clouds under the semi-honest model. Particularly, we focus on optimizing the network-related operations during kNN classification. That is, the proposed cryptographic protocol reduces the number of interactions between the servers by using a fully homomorphic encryption scheme and eliminates unnecessary traffic by applying mathematical techniques. In addition, the indistinguishability-based security of FSkNN is proven. We implemented FSkNN with C++ and the testbed experiments demonstrate that the proposed scheme significantly facilitates the query response time and reduces the communication cost.
基于全同态加密的分布式云环境安全kNN
针对多个云的保护隐私的k-最近邻(PPkNN)分类支持将查询的数据分类到符合数据隐私的类中,其中数据库和密钥服务器联合执行加密操作。不幸的是,现有的解决方案耗时很长,并且在数据库和密钥服务器之间产生大量流量。因此,在本文中,我们在半诚实模型下,针对部署在多云中的分布式数据库,提出了一种快速安全的kNN分类协议,即FSkNN。特别是,我们专注于优化kNN分类过程中与网络相关的操作。也就是说,所提出的加密协议通过使用完全同态的加密方案减少了服务器之间的交互次数,并通过应用数学技术消除了不必要的流量。此外,验证了FSkNN基于不可区分性的安全性。用c++实现了FSkNN,实验结果表明,该方案显著缩短了查询响应时间,降低了通信成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信