Masked latent transformer with random masking ratio to advance the diagnosis of dental fluorosis

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hao Xu , Yun Wu , Junpeng Wu , Rui Xie , Maohua Gu , Rongpin Wang
{"title":"Masked latent transformer with random masking ratio to advance the diagnosis of dental fluorosis","authors":"Hao Xu ,&nbsp;Yun Wu ,&nbsp;Junpeng Wu ,&nbsp;Rui Xie ,&nbsp;Maohua Gu ,&nbsp;Rongpin Wang","doi":"10.1016/j.jvcir.2025.104496","DOIUrl":null,"url":null,"abstract":"<div><div>Dental fluorosis is a chronic condition caused by long-term overconsumption of fluoride, which leads to changes in the appearance of tooth enamel. Diagnosing its severity can be challenging for dental professionals, and limited research on deep learning applications in this field. Therefore, we propose a novel deep learning model, masked latent transformer with random masking ratio (MLTrMR), to advance the diagnosis of dental fluorosis. MLTrMR enhances contextual learning by using a masked latent modeling scheme based on Vision Transformer. It extracts latent tokens from the original image with a latent embedder, processes unmasked tokens with a latent transformer (LT) block, and predicts masked tokens. To improve model performance, we incorporate an auxiliary loss function. MLTrMR achieves state-of-the-art results, with 80.19% accuracy, 75.79% F1 score, and 81.28% quadratic weighted kappa on the first open-source dental fluorosis image dataset (DFID) we constructed. The dataset and code are available at <span><span>https://github.com/uxhao-o/MLTrMR</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"111 ","pages":"Article 104496"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325001105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dental fluorosis is a chronic condition caused by long-term overconsumption of fluoride, which leads to changes in the appearance of tooth enamel. Diagnosing its severity can be challenging for dental professionals, and limited research on deep learning applications in this field. Therefore, we propose a novel deep learning model, masked latent transformer with random masking ratio (MLTrMR), to advance the diagnosis of dental fluorosis. MLTrMR enhances contextual learning by using a masked latent modeling scheme based on Vision Transformer. It extracts latent tokens from the original image with a latent embedder, processes unmasked tokens with a latent transformer (LT) block, and predicts masked tokens. To improve model performance, we incorporate an auxiliary loss function. MLTrMR achieves state-of-the-art results, with 80.19% accuracy, 75.79% F1 score, and 81.28% quadratic weighted kappa on the first open-source dental fluorosis image dataset (DFID) we constructed. The dataset and code are available at https://github.com/uxhao-o/MLTrMR.
用随机掩蔽比掩盖潜伏变压器提高氟斑牙的诊断
氟斑牙是一种由于长期过量摄入氟化物而引起的慢性疾病,这会导致牙釉质外观的变化。对于牙科专业人员来说,诊断其严重程度可能具有挑战性,并且深度学习在该领域的应用研究有限。因此,我们提出了一种新的深度学习模型——随机掩蔽比掩蔽潜伏变压器(MLTrMR),以提高氟斑牙的诊断水平。MLTrMR通过使用基于视觉转换的隐藏潜在建模方案来增强上下文学习。它使用潜在嵌入器从原始图像中提取潜在令牌,使用潜在变压器(LT)块处理未被掩盖的令牌,并预测被掩盖的令牌。为了提高模型的性能,我们加入了一个辅助损失函数。MLTrMR在我们构建的第一个开源氟牙症图像数据集(DFID)上达到了最先进的结果,准确率为80.19%,F1分数为75.79%,二次加权kappa为81.28%。数据集和代码可在https://github.com/uxhao-o/MLTrMR上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信