Hye Won Kim, Sangwook Kang, Sihyeon Kim, Hyunbin Lee, Yegang Hur, Woon Ju Song, Dong-Chan Oh, Seokhee Kim
{"title":"Discovery of a Two-Step Enzyme Cascade Converting Aspartate to Aminomalonate in Peptide Natural Product Biosynthesis","authors":"Hye Won Kim, Sangwook Kang, Sihyeon Kim, Hyunbin Lee, Yegang Hur, Woon Ju Song, Dong-Chan Oh, Seokhee Kim","doi":"10.1021/jacs.5c05071","DOIUrl":null,"url":null,"abstract":"Aminomalonic acid (Ama) is found in various natural products and protein hydrolysates of multiple organisms, but the understanding of its biosynthetic origin remains largely limited. By exploiting a biosynthetic gene cluster for ribosomally synthesized and post–translationally modified peptides (RiPPs), which are rich sources of new enzyme chemistry, we identified a novel two-enzyme pathway for Ama biosynthesis. This biosynthetic pathway, mediated by an Fe(II)/2-oxoglutarate-dependent oxygenase (Fe(II)/2OG), SmaO, and an atypical Fe(II)-dependent histidine-aspartate (HD) domain enzyme, SmaX, converts aspartate (Asp) to β-hydroxyaspartic acid (Hya) intermediate and ultimately to Ama. These tandem enzymatic reactions─hydroxylation of the carbon next to an acid functional group and subsequent four-electron oxidative bond cleavage in α-hydroxy acid─are similar to those associated with other known HD domain oxygenases, PhnZ and TmpB. However, SmaX also exhibits unique features, such as C–C bond cleavage in α-hydroxycarboxylate using a single Fe cofactor, in contrast to the C–P bond cleavage using a mixed-valent diiron cofactor in PhnZ and TmpB. Bioinformatic analysis reveals that this two-enzyme cascade may be present in various biosynthetic pathways for peptide natural products, including RiPPs and nonribosomal peptides (NRPs). Collectively, our study demonstrates the presence of a novel Ama biosynthetic pathway and suggests its widespread distribution in peptide natural product biosynthesis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"19 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05071","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aminomalonic acid (Ama) is found in various natural products and protein hydrolysates of multiple organisms, but the understanding of its biosynthetic origin remains largely limited. By exploiting a biosynthetic gene cluster for ribosomally synthesized and post–translationally modified peptides (RiPPs), which are rich sources of new enzyme chemistry, we identified a novel two-enzyme pathway for Ama biosynthesis. This biosynthetic pathway, mediated by an Fe(II)/2-oxoglutarate-dependent oxygenase (Fe(II)/2OG), SmaO, and an atypical Fe(II)-dependent histidine-aspartate (HD) domain enzyme, SmaX, converts aspartate (Asp) to β-hydroxyaspartic acid (Hya) intermediate and ultimately to Ama. These tandem enzymatic reactions─hydroxylation of the carbon next to an acid functional group and subsequent four-electron oxidative bond cleavage in α-hydroxy acid─are similar to those associated with other known HD domain oxygenases, PhnZ and TmpB. However, SmaX also exhibits unique features, such as C–C bond cleavage in α-hydroxycarboxylate using a single Fe cofactor, in contrast to the C–P bond cleavage using a mixed-valent diiron cofactor in PhnZ and TmpB. Bioinformatic analysis reveals that this two-enzyme cascade may be present in various biosynthetic pathways for peptide natural products, including RiPPs and nonribosomal peptides (NRPs). Collectively, our study demonstrates the presence of a novel Ama biosynthetic pathway and suggests its widespread distribution in peptide natural product biosynthesis.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.