求助PDF
{"title":"Energy Symmetry Breaking of Dirac and Weyl Fermions in Magnetized Spinning Conical Geometries","authors":"Abdullah Guvendi, Omar Mustafa","doi":"10.1002/adts.202500451","DOIUrl":null,"url":null,"abstract":"The dynamics of relativistic fermions are studied in the presence of an out-of-plane magnetic field and a spinning point-like defect, deriving exact solutions. These results show that the defect's spin (<span data-altimg=\"/cms/asset/04eda720-fc5d-4f6d-b163-e228ebfa7d15/adts70058-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"222\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0001\" display=\"inline\" location=\"graphic/adts70058-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"pi\" data-semantic-type=\"identifier\">ϖ</mi>$\\varpi$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) breaks the symmetry between fermion and antifermion energy levels around zero energy. This symmetry breaking is influenced by the magnetic field strength (<span data-altimg=\"/cms/asset/4665fd11-5921-4db2-84b0-373f076b87c5/adts70058-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"223\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0002.png\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B Subscript ring\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.02em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" size=\"s\"><mjx-c></mjx-c></mjx-mo></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0002\" display=\"inline\" location=\"graphic/adts70058-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B Subscript ring\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"script\">B</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">∘</mo></msub>$\\mathcal {B}_{\\circ }$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) and the conical or anti-conical geometry. Energy levels are further modified by the fractionalized spin <span data-altimg=\"/cms/asset/5eb877df-eeae-483f-83c0-a33dade0c6ff/adts70058-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"224\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals s divided by alpha\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0003\" display=\"inline\" location=\"graphic/adts70058-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals s divided by alpha\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi></mrow></mrow>$\\tilde{s} = s / \\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, where <span data-altimg=\"/cms/asset/11a50231-2d1f-40cc-9b75-fca0372cce3c/adts70058-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"225\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0004.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0004\" display=\"inline\" location=\"graphic/adts70058-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi>$\\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container> denotes the angular deficit or surplus, affecting conical or anti-conical backgrounds. While fractionalized spin has no effect when <span data-altimg=\"/cms/asset/69b5fd0d-1771-46bb-b867-952c0325de13/adts70058-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"226\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals minus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"11\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\"6,7\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0005\" display=\"inline\" location=\"graphic/adts70058-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals minus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"11\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"6,7\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo></mrow></mrow></mrow>$\\tilde{s} = -|\\tilde{s}|$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, it significantly alters energy levels when <span data-altimg=\"/cms/asset/f99c3e24-fce2-4c02-82a6-bf11c18421d2/adts70058-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"227\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0006.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals plus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"positive\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,+\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mover data-semantic-children=\"6,7\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.056em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.155em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0006\" display=\"inline\" location=\"graphic/adts70058-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,11\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"s overTilde equals plus StartAbsoluteValue s overTilde EndAbsoluteValue\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"12\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"10\" data-semantic-content=\"4\" data-semantic-parent=\"12\" data-semantic-role=\"positive\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,+\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">+</mo><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"5,9\" data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"6,7\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">s</mi><mo data-semantic-=\"\" data-semantic-parent=\"8\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" stretchy=\"false\">|</mo></mrow></mrow></mrow>$\\tilde{s} = +|\\tilde{s}|$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. The defect's spin impacts fermion energy levels, leaving antifermion levels unchanged. For large <span data-altimg=\"/cms/asset/79b88eb3-8215-4c20-8209-eae6c4f4904d/adts70058-math-0007.png\"></span><mjx-container ctxtmenu_counter=\"228\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0007.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"pi overTilde equals pi divided by alpha\" data-semantic-type=\"relseq\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.025em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0007\" display=\"inline\" location=\"graphic/adts70058-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,7\" data-semantic-content=\"3\" data-semantic-role=\"equality\" data-semantic-speech=\"pi overTilde equals pi divided by alpha\" data-semantic-type=\"relseq\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"8\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ϖ</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ϖ</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi></mrow></mrow>$\\tilde{\\varpi } = \\varpi / \\alpha$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the defect's spin dominates, minimizing internal quantum effects. In the case of <span data-altimg=\"/cms/asset/c87cc602-984f-40dd-9c87-f28ab3cf3d57/adts70058-math-0008.png\"></span><mjx-container ctxtmenu_counter=\"229\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0008.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"pi equals 0\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0008\" display=\"inline\" location=\"graphic/adts70058-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"pi equals 0\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ϖ</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn></mrow>$\\varpi = 0$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\"/cms/asset/3573de52-75db-4ac9-b0dc-37d76a86dfa4/adts70058-math-0009.png\"></span><mjx-container ctxtmenu_counter=\"230\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts70058-math-0009.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"alpha equals 1\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts70058:adts70058-math-0009\" display=\"inline\" location=\"graphic/adts70058-math-0009.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"alpha equals 1\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow>$\\alpha = 1$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, Landau levels are recovered. These findings suggest the potential to fine-tune charge carrier dynamics in magnetized monolayer materials with spinning defects or vortices.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500451","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
引用
批量引用