A combined DFT and MD study on interface stability in ferrite–cementite systems

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pablo Canca , Chu-Chun Fu , Christophe J. Ortiz , Blanca Biel
{"title":"A combined DFT and MD study on interface stability in ferrite–cementite systems","authors":"Pablo Canca ,&nbsp;Chu-Chun Fu ,&nbsp;Christophe J. Ortiz ,&nbsp;Blanca Biel","doi":"10.1016/j.actamat.2025.121157","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the atomic structure and energetic stability of ferrite–cementite interfaces is essential for optimising the mechanical performance of steels, especially under extreme conditions such as those encountered in nuclear fusion environments. In this work, we combine Classical Molecular Dynamics (MD) and Density Functional Theory (DFT) to systematically investigate the stability of ferrite–cementite interfaces within the Bagaryatskii Orientation Relationship. Three interface orientations and several cementite terminations are considered to identify the most stable configurations.</div><div>MD simulations reveal that the <span><math><mrow><msub><mrow><mrow><mo>(</mo><mn>010</mn><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msub><mrow><mo>|</mo><mo>|</mo></mrow><msub><mrow><mrow><mo>(</mo><mn>11</mn><mover><mrow><mn>2</mn></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow></mrow><mrow><mi>θ</mi></mrow></msub><mrow><mo>|</mo><mo>|</mo></mrow><msub><mrow><mrow><mo>(</mo><mn>1</mn><mover><mrow><mn>1</mn></mrow><mrow><mo>̄</mo></mrow></mover><mn>0</mn><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> orientations are energetically favourable for selected terminations, and these predictions are validated and refined by subsequent DFT calculations. A key result of our study is the destabilising effect of interfacial carbon atoms, which increase the interface energy and decrease the Griffith energy, indicating a reduced resistance to fracture. This finding contrasts with earlier reports suggesting a stabilising role for carbon.</div><div>Our analysis of the electronic structure shows that Fe–C bonding at the interface perturbs the metallic environment of interfacial Fe atoms. This bonding response explains the observed variations in magnetic moment and helps rationalise the trends in interface energy. We also establish correlations between interface energy, magnetic perturbation, and a bond-based descriptor quantifying new and broken bonds. These insights provide a physically grounded, predictive framework for the design and optimisation of ferrite–cementite interfaces in advanced steels.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121157"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004458","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the atomic structure and energetic stability of ferrite–cementite interfaces is essential for optimising the mechanical performance of steels, especially under extreme conditions such as those encountered in nuclear fusion environments. In this work, we combine Classical Molecular Dynamics (MD) and Density Functional Theory (DFT) to systematically investigate the stability of ferrite–cementite interfaces within the Bagaryatskii Orientation Relationship. Three interface orientations and several cementite terminations are considered to identify the most stable configurations.
MD simulations reveal that the (010)θ||(112̄)α and (001)θ||(11̄0)α orientations are energetically favourable for selected terminations, and these predictions are validated and refined by subsequent DFT calculations. A key result of our study is the destabilising effect of interfacial carbon atoms, which increase the interface energy and decrease the Griffith energy, indicating a reduced resistance to fracture. This finding contrasts with earlier reports suggesting a stabilising role for carbon.
Our analysis of the electronic structure shows that Fe–C bonding at the interface perturbs the metallic environment of interfacial Fe atoms. This bonding response explains the observed variations in magnetic moment and helps rationalise the trends in interface energy. We also establish correlations between interface energy, magnetic perturbation, and a bond-based descriptor quantifying new and broken bonds. These insights provide a physically grounded, predictive framework for the design and optimisation of ferrite–cementite interfaces in advanced steels.

Abstract Image

铁素体-渗碳体体系界面稳定性的DFT和MD联合研究
了解铁素体-渗碳体界面的原子结构和能量稳定性对于优化钢的机械性能至关重要,特别是在核聚变环境等极端条件下。在这项工作中,我们结合经典分子动力学(MD)和密度泛函理论(DFT)系统地研究了铁素体-渗碳体界面在Bagaryatskii取向关系中的稳定性。考虑了三个界面取向和几个渗碳体端点来确定最稳定的构型。MD模拟表明,(010)θ||(112)α(010)θ||(112)α和(001)θ||(11)α(001)θ||(11)α取向在能量上有利于选定的终端,这些预测通过随后的DFT计算得到验证和改进。我们研究的一个关键结果是界面碳原子的不稳定作用,它增加了界面能,降低了格里菲斯能,表明断裂阻力降低。这一发现与先前认为碳具有稳定作用的报告形成了对比。我们的电子结构分析表明,界面上的Fe - c键扰乱了界面铁原子的金属环境。这种成键响应解释了观察到的磁矩变化,并有助于使界面能的趋势合理化。我们还建立了界面能、磁扰动和基于键的描述符之间的相关性,该描述符量化了新键和断裂键。这些见解为高级钢中铁素体-渗碳体界面的设计和优化提供了物理基础和预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信