When investigator meets large language models: a qualitative analysis of cancer patient decision-making journeys

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Neta Shanwetter Levit, Mor Saban
{"title":"When investigator meets large language models: a qualitative analysis of cancer patient decision-making journeys","authors":"Neta Shanwetter Levit, Mor Saban","doi":"10.1038/s41746-025-01747-3","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) are transforming the landscape of healthcare research, yet their role in qualitative analysis remains underexplored. This study compares human-led and LLM-assisted approaches to analyzing cancer patient narratives, using 33 semi-structured interviews. We conducted three parallel analyses: investigator-led thematic analysis, ChatGPT-4o, and Gemini Advance Pro 1.5. The investigator-led approach identified psychosocial and emotional themes, while the LLMs highlighted structural, temporal, and logistical aspects. LLMs demonstrated efficiency in identifying recurring patterns but struggled with emotional nuance and contextual depth. Investigator-led analysis, while time-intensive, captured the complexities of identity disruption and emotional processing. Our findings suggest that LLMs can serve as complementary tools in qualitative research, enhancing analytical breadth when paired with human interpretation. This study proposes a hybrid model integrating AI-assisted and human-led methods and offers practical recommendations for responsibly incorporating LLMs into qualitative health research.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"19 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01747-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) are transforming the landscape of healthcare research, yet their role in qualitative analysis remains underexplored. This study compares human-led and LLM-assisted approaches to analyzing cancer patient narratives, using 33 semi-structured interviews. We conducted three parallel analyses: investigator-led thematic analysis, ChatGPT-4o, and Gemini Advance Pro 1.5. The investigator-led approach identified psychosocial and emotional themes, while the LLMs highlighted structural, temporal, and logistical aspects. LLMs demonstrated efficiency in identifying recurring patterns but struggled with emotional nuance and contextual depth. Investigator-led analysis, while time-intensive, captured the complexities of identity disruption and emotional processing. Our findings suggest that LLMs can serve as complementary tools in qualitative research, enhancing analytical breadth when paired with human interpretation. This study proposes a hybrid model integrating AI-assisted and human-led methods and offers practical recommendations for responsibly incorporating LLMs into qualitative health research.

Abstract Image

当研究者遇到大型语言模型:癌症患者决策过程的定性分析
大型语言模型(llm)正在改变医疗保健研究的格局,但它们在定性分析中的作用仍未得到充分探索。本研究比较了人类主导和法学硕士辅助的方法来分析癌症患者的叙述,使用33个半结构化访谈。我们进行了三个平行分析:研究者主导的主题分析、chatgpt - 40和Gemini Advance Pro 1.5。研究者主导的方法确定了社会心理和情感主题,而法学硕士强调了结构、时间和后勤方面。法学硕士在识别反复出现的模式方面表现出了效率,但在情感细微差别和背景深度方面却存在困难。调查人员主导的分析虽然耗时,但却捕捉到了身份中断和情绪处理的复杂性。我们的研究结果表明,法学硕士可以作为定性研究的补充工具,当与人类解释相结合时,可以增强分析的广度。本研究提出了一种整合人工智能辅助和人类主导方法的混合模型,并为负责任地将法学硕士纳入定性健康研究提供了实用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信