Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem

IF 15.7 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Phattharaporn Singkanipa, Victor Kasatkin, Zeyuan Zhou, Gregory Quiroz, Daniel A. Lidar
{"title":"Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem","authors":"Phattharaporn Singkanipa, Victor Kasatkin, Zeyuan Zhou, Gregory Quiroz, Daniel A. Lidar","doi":"10.1103/physrevx.15.021082","DOIUrl":null,"url":null,"abstract":"Simon’s problem is to find a hidden period (a bitstring) encoded into an unknown 2-to-1 function. It is one of the earliest problems for which an exponential quantum speedup was proven for ideal, noiseless quantum computers, albeit in the oracle model. Here, using two different 127-qubit IBM Quantum superconducting processors, we demonstrate an algorithmic quantum speedup for a variant of Simon’s problem where the hidden period has a restricted Hamming weight w</a:mi></a:math>. For sufficiently small values of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>w</c:mi></c:math> and for circuits involving up to 58 qubits, we demonstrate an exponential speedup, albeit of a lower quality than the speedup predicted for the noiseless algorithm. The speedup exponent and the range of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>w</e:mi></e:math> values for which an exponential speedup exists are significantly enhanced when the computation is protected by dynamical decoupling. Further enhancement is achieved with measurement error mitigation. This case constitutes a demonstration of a bona fide quantum advantage for an Abelian hidden subgroup problem. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"39 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021082","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simon’s problem is to find a hidden period (a bitstring) encoded into an unknown 2-to-1 function. It is one of the earliest problems for which an exponential quantum speedup was proven for ideal, noiseless quantum computers, albeit in the oracle model. Here, using two different 127-qubit IBM Quantum superconducting processors, we demonstrate an algorithmic quantum speedup for a variant of Simon’s problem where the hidden period has a restricted Hamming weight w. For sufficiently small values of w and for circuits involving up to 58 qubits, we demonstrate an exponential speedup, albeit of a lower quality than the speedup predicted for the noiseless algorithm. The speedup exponent and the range of w values for which an exponential speedup exists are significantly enhanced when the computation is protected by dynamical decoupling. Further enhancement is achieved with measurement error mitigation. This case constitutes a demonstration of a bona fide quantum advantage for an Abelian hidden subgroup problem. Published by the American Physical Society 2025
一类阿贝尔隐子群问题的量子加速算法论证
Simon的问题是找到一个隐藏的周期(一个位串)编码成一个未知的2对1函数。这是指数量子加速最早被证明适用于理想的无噪声量子计算机的问题之一,尽管是在oracle模型中。在这里,使用两个不同的127量子位IBM量子超导处理器,我们展示了一种算法量子加速,用于西蒙问题的一个变体,其中隐藏周期具有有限的汉明权重w。对于足够小的w值和涉及多达58量子位的电路,我们展示了指数级加速,尽管质量低于无噪声算法预测的加速。在动态解耦保护下,加速指数和存在指数加速的w值范围得到了显著提高。进一步的增强是通过降低测量误差来实现的。这种情况构成了一个真正的量子优势的阿贝尔隐子群问题的演示。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信