Geometry-Dependent Defect Merging Induces Bifurcated Dynamics in Active Networks.

ArXiv Pub Date : 2025-09-08
Fan Yang, Shichen Liu, Hao Wang, Heun Jin Lee, Rob Phillips, Matt Thomson
{"title":"Geometry-Dependent Defect Merging Induces Bifurcated Dynamics in Active Networks.","authors":"Fan Yang, Shichen Liu, Hao Wang, Heun Jin Lee, Rob Phillips, Matt Thomson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cytoskeletal networks can repair defects to maintain structural integrity. However, the mechanisms and dynamics of defect merging remain poorly understood. Here we report a geometry-tunable merging mechanism in microtubule-motor networks initiated by active crosslinking. We directly generate defects using a light-controlled microtubule-motor system in O-shaped and V-shaped networks, and observe that the defects can self-close. Combining theory and experiment, we find that the V-shaped networks must overcome internal elastic resistance in order to zip up cracks, giving rise to a bifurcation of dynamics dependent on the initial opening angle of the crack: the crack merges below a critical angle and opens up at larger angles. Simulation of a continuum model reproduces the bifurcation dynamics, revealing the importance of overlapping boundary layers where free motors and microtubules can actively crosslink and thereby merge the defects. We also formulate a simple elastic-rod model that can qualitatively predict the critical angle, which is tunable by the network geometry.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cytoskeletal networks can repair defects to maintain structural integrity. However, the mechanisms and dynamics of defect merging remain poorly understood. Here we report a geometry-tunable merging mechanism in microtubule-motor networks initiated by active crosslinking. We directly generate defects using a light-controlled microtubule-motor system in O-shaped and V-shaped networks, and observe that the defects can self-close. Combining theory and experiment, we find that the V-shaped networks must overcome internal elastic resistance in order to zip up cracks, giving rise to a bifurcation of dynamics dependent on the initial opening angle of the crack: the crack merges below a critical angle and opens up at larger angles. Simulation of a continuum model reproduces the bifurcation dynamics, revealing the importance of overlapping boundary layers where free motors and microtubules can actively crosslink and thereby merge the defects. We also formulate a simple elastic-rod model that can qualitatively predict the critical angle, which is tunable by the network geometry.

微管运动网络的主动愈合。
细胞骨架网络具有自我修复的特性,网络可以修复缺陷以保持结构的完整性。然而,愈合的机制和动力学在很大程度上仍然未知。在这里,我们报告了微管-运动网络通过主动交联的愈合机制。我们使用光控微管电机系统直接在o型和v型网络中产生缺陷,并观察到缺陷可以自愈。结合理论和实验,我们发现v形网络必须克服内部弹性阻力才能愈合裂纹,从而产生依赖于裂纹初始张开角的动力学分岔:裂纹在临界角以下合并,并以更大的角度张开。连续体模型的模拟再现了分岔动力学,揭示了边界层的重要性,在边界层中自由电机和微管可以主动交联,从而治愈缺陷。我们还建立了一个简单的弹性杆模型,可以定性地预测临界角度,并发现该模型可以通过网络的几何形状进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信