Learning to suppress tremors: a deep reinforcement learning-enabled soft exoskeleton for Parkinson's patients.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-05-21 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1537470
Tamás Endrei, Sándor Földi, Ádám Makk, György Cserey
{"title":"Learning to suppress tremors: a deep reinforcement learning-enabled soft exoskeleton for Parkinson's patients.","authors":"Tamás Endrei, Sándor Földi, Ádám Makk, György Cserey","doi":"10.3389/frobt.2025.1537470","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neurological tremors, prevalent among a large population, are one of the most rampant movement disorders. Biomechanical loading and exoskeletons show promise in enhancing patient well-being, but traditional control algorithms limit their efficacy in dynamic movements and personalized interventions. Furthermore, a pressing need exists for more comprehensive and robust validation methods to ensure the effectiveness and generalizability of proposed solutions.</p><p><strong>Methods: </strong>This paper proposes a physical simulation approach modeling multiple arm joints and tremor propagation. This study also introduces a novel adaptable reinforcement learning environment tailored for disorders with tremors. We present a deep reinforcement learning-based encoder-actor controller for Parkinson's tremors in various shoulder and elbow joint axes displayed in dynamic movements.</p><p><strong>Results: </strong>Our findings suggest that such a control strategy offers a viable solution for tremor suppression in real-world scenarios.</p><p><strong>Discussion: </strong>By overcoming the limitations of traditional control algorithms, this work takes a new step in adapting biomechanical loading into the everyday life of patients. This work also opens avenues for more adaptive and personalized interventions in managing movement disorders.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1537470"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1537470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Neurological tremors, prevalent among a large population, are one of the most rampant movement disorders. Biomechanical loading and exoskeletons show promise in enhancing patient well-being, but traditional control algorithms limit their efficacy in dynamic movements and personalized interventions. Furthermore, a pressing need exists for more comprehensive and robust validation methods to ensure the effectiveness and generalizability of proposed solutions.

Methods: This paper proposes a physical simulation approach modeling multiple arm joints and tremor propagation. This study also introduces a novel adaptable reinforcement learning environment tailored for disorders with tremors. We present a deep reinforcement learning-based encoder-actor controller for Parkinson's tremors in various shoulder and elbow joint axes displayed in dynamic movements.

Results: Our findings suggest that such a control strategy offers a viable solution for tremor suppression in real-world scenarios.

Discussion: By overcoming the limitations of traditional control algorithms, this work takes a new step in adapting biomechanical loading into the everyday life of patients. This work also opens avenues for more adaptive and personalized interventions in managing movement disorders.

学习抑制震颤:用于帕金森患者的深度强化学习软外骨骼。
神经震颤是一种常见的运动障碍,在大量人群中流行。生物力学载荷和外骨骼在增强患者健康方面表现出希望,但传统的控制算法限制了它们在动态运动和个性化干预方面的功效。此外,迫切需要更全面和稳健的验证方法,以确保所提出的解决方案的有效性和可泛化性。方法:提出了一种模拟多臂关节和震颤传播的物理仿真方法。本研究还介绍了一种为震颤障碍量身定制的新型适应性强化学习环境。我们提出了一种基于深度强化学习的编码器-actor控制器,用于动态运动中显示的各种肩关节和肘关节轴的帕金森震颤。结果:我们的研究结果表明,这种控制策略为现实世界中的震颤抑制提供了可行的解决方案。讨论:通过克服传统控制算法的局限性,这项工作在使生物力学负荷适应患者的日常生活方面迈出了新的一步。这项工作也为管理运动障碍的适应性和个性化干预开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信