Aging-dependent YAP1 reduction contributes to AD pathology by upregulating the Nr4a1-AKT/GSK-3β axis.

IF 15.2 1区 医学 Q1 NEUROSCIENCES
Ling Lei, Yilei Cheng, Anqi Yin, Jian-Min Han, Gang Wu, Fumin Yang, Qi Wang, Jian-Zhi Wang, Rong Liu, Hong-Lian Li, Xiaochuan Wang
{"title":"Aging-dependent YAP1 reduction contributes to AD pathology by upregulating the Nr4a1-AKT/GSK-3β axis.","authors":"Ling Lei, Yilei Cheng, Anqi Yin, Jian-Min Han, Gang Wu, Fumin Yang, Qi Wang, Jian-Zhi Wang, Rong Liu, Hong-Lian Li, Xiaochuan Wang","doi":"10.1186/s40035-025-00487-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for > 95% of all Alzheimer's disease (AD) cases. Yes-associated protein 1 (YAP1), an aging-dependent protein, is a key element in the classical Hippo-YAP1 pathway mediated by a kinase cascade. Research showed that YAP1 was markedly reduced in the brains of individuals with AD. However, the mechanisms underlying the susceptibility of the Hippo-YAP1 signaling pathway in the context of LOAD remain unclear.</p><p><strong>Methods: </strong>AAV9-YAP1-RNAi was injected into the hippocampi of C57BL/6J mice to establish a YAP1 knockdown model. Overexpression of full-length YAP1 was achieved by injecting AAV9-YAP1 into the hippocampi of SAMP8 mice. To establish the model of knockdown of nuclear receptor subfamily 4 group A member 1 (Nr4a1), AAV9-Nr4a1-RNAi was injected into the hippocampi of SAMP8 mice. In the C57BL/6J mice with YAP1 knockdown, Nr4a1 expression was either knocked down or inhibited with DIM-C to examine the impact of Nr4a1 on tau phosphorylation and cognitive deficits. Primary hippocampal neurons from Sprague-Dawley (SD) rats were infected with lentivirus (LV)-YAP1 to create a YAP1 overexpression model, and Aβ treatment was used to induce neuronal senescence. Protein levels were assessed using immunofluorescence, Western blotting, and ELISA. Animal behavior was evaluated using the Morris water maze test, novel object recognition test, and open field test.</p><p><strong>Results: </strong>YAP1 was reduced in the hippocampus of both aged C57BL/6J mice and SAMP8 AD model mice through Hippo pathway activation, as well as in Aβ-induced senescent neurons. Overexpression of YAP1 in primary neurons significantly mitigated the Aβ-induced neuronal senescence by downregulating several senescence-related genes, including p16 and p53. The levels of phosphorylated AKT/GSK-3β in neurons were increased with overexpression of YAP1 both in vivo and in vitro. Knockdown of YAP1 induced AD-like symptoms and exacerbated cognitive decline in 2-month-old C57BL/6J mice. Injection of AAV9-YAP1 in the brains of SAMP8 mice partially alleviated neuronal senescence and enhanced cognitive function. Notably, genetic knockdown and chemical inhibition of Nr4a1 significantly ameliorated cognitive deficits as well as AD-like pathology in these subjects.</p><p><strong>Conclusions: </strong>These findings reveal an etiopathogenic relationship between aging and AD, which is associated with the YAP1-Nr4a1-AKT/GSK-3β signaling pathway. Our findings provide insight into the therapeutic strategies aimed at delaying brain aging and combating neurodegenerative diseases such as AD.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"14 1","pages":"29"},"PeriodicalIF":15.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-025-00487-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for > 95% of all Alzheimer's disease (AD) cases. Yes-associated protein 1 (YAP1), an aging-dependent protein, is a key element in the classical Hippo-YAP1 pathway mediated by a kinase cascade. Research showed that YAP1 was markedly reduced in the brains of individuals with AD. However, the mechanisms underlying the susceptibility of the Hippo-YAP1 signaling pathway in the context of LOAD remain unclear.

Methods: AAV9-YAP1-RNAi was injected into the hippocampi of C57BL/6J mice to establish a YAP1 knockdown model. Overexpression of full-length YAP1 was achieved by injecting AAV9-YAP1 into the hippocampi of SAMP8 mice. To establish the model of knockdown of nuclear receptor subfamily 4 group A member 1 (Nr4a1), AAV9-Nr4a1-RNAi was injected into the hippocampi of SAMP8 mice. In the C57BL/6J mice with YAP1 knockdown, Nr4a1 expression was either knocked down or inhibited with DIM-C to examine the impact of Nr4a1 on tau phosphorylation and cognitive deficits. Primary hippocampal neurons from Sprague-Dawley (SD) rats were infected with lentivirus (LV)-YAP1 to create a YAP1 overexpression model, and Aβ treatment was used to induce neuronal senescence. Protein levels were assessed using immunofluorescence, Western blotting, and ELISA. Animal behavior was evaluated using the Morris water maze test, novel object recognition test, and open field test.

Results: YAP1 was reduced in the hippocampus of both aged C57BL/6J mice and SAMP8 AD model mice through Hippo pathway activation, as well as in Aβ-induced senescent neurons. Overexpression of YAP1 in primary neurons significantly mitigated the Aβ-induced neuronal senescence by downregulating several senescence-related genes, including p16 and p53. The levels of phosphorylated AKT/GSK-3β in neurons were increased with overexpression of YAP1 both in vivo and in vitro. Knockdown of YAP1 induced AD-like symptoms and exacerbated cognitive decline in 2-month-old C57BL/6J mice. Injection of AAV9-YAP1 in the brains of SAMP8 mice partially alleviated neuronal senescence and enhanced cognitive function. Notably, genetic knockdown and chemical inhibition of Nr4a1 significantly ameliorated cognitive deficits as well as AD-like pathology in these subjects.

Conclusions: These findings reveal an etiopathogenic relationship between aging and AD, which is associated with the YAP1-Nr4a1-AKT/GSK-3β signaling pathway. Our findings provide insight into the therapeutic strategies aimed at delaying brain aging and combating neurodegenerative diseases such as AD.

衰老依赖的YAP1减少通过上调Nr4a1-AKT/GSK-3β轴参与AD病理。
背景:年龄是迟发性阿尔茨海默病(late-onset Alzheimer's disease, LOAD)的最大危险因素,占所有阿尔茨海默病(AD)病例的95%。Yes-associated protein 1 (YAP1)是一种衰老依赖性蛋白,是由激酶级联介导的经典Hippo-YAP1通路的关键元件。研究表明,阿尔茨海默病患者大脑中的YAP1蛋白明显减少。然而,Hippo-YAP1信号通路在LOAD背景下的易感性机制尚不清楚。方法:将AAV9-YAP1-RNAi注入C57BL/6J小鼠海马,建立YAP1敲低模型。通过将AAV9-YAP1注射到SAMP8小鼠海马中,实现了全长YAP1的过表达。将AAV9-Nr4a1-RNAi注入SAMP8小鼠海马,建立核受体亚家族4组A成员1 (Nr4a1)敲低模型。在YAP1敲低的C57BL/6J小鼠中,用DIM-C敲低或抑制Nr4a1的表达,以检测Nr4a1对tau磷酸化和认知缺陷的影响。用慢病毒(LV)-YAP1感染SD大鼠海马原代神经元,建立YAP1过表达模型,并用a β处理诱导神经元衰老。采用免疫荧光、Western blotting和ELISA检测蛋白水平。采用Morris水迷宫实验、新物体识别实验和开阔场地实验对动物行为进行评价。结果:老年C57BL/6J小鼠和SAMP8 AD模型小鼠海马及a β诱导的衰老神经元中YAP1均通过Hippo通路激活降低。YAP1在原代神经元中的过表达通过下调p16和p53等衰老相关基因,显著减轻了a β诱导的神经元衰老。在体内和体外,磷酸化AKT/GSK-3β水平随着YAP1的过表达而升高。YAP1敲低可诱导2月龄C57BL/6J小鼠ad样症状并加重认知能力下降。在SAMP8小鼠脑内注射AAV9-YAP1可部分缓解神经元衰老,增强认知功能。值得注意的是,基因敲低和化学抑制Nr4a1显著改善了这些受试者的认知缺陷和ad样病理。结论:这些发现揭示了衰老与AD的致病关系,其与YAP1-Nr4a1-AKT/GSK-3β信号通路有关。我们的研究结果为延缓大脑衰老和对抗神经退行性疾病(如AD)的治疗策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信