Jike Huang, Fan Jia, Jiaxuan Li, Wanqiu Xie, Zhiwei Rong, Lan Mi, Yuqin Song, Yan Hou
{"title":"Dynamic Information Borrowing From External Data in Clinical Trials: The Elastic Commensurate Prior Approach.","authors":"Jike Huang, Fan Jia, Jiaxuan Li, Wanqiu Xie, Zhiwei Rong, Lan Mi, Yuqin Song, Yan Hou","doi":"10.1002/sim.70129","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating external data into a clinical trial can introduce systematic bias in estimates and inflate the study's type I error due to differences in study design and enrollment criteria. Existing prior designs for information borrowing lack the ability to dynamically adjust the weight based on the similarity between concurrent and external data. To address this challenge, we thereby introduce a novel method called the elastic commensurate prior (ECP), which combines the commensurate prior with the elastic prior method. By dynamically adjusting the weight of external data using a measure of congruence, this method demonstrates strong performance in maintaining power while providing adequate type I error control across different scenarios, including congruence, approximate congruence, and incongruence between external and concurrent data. Compared to existing methods such as the modified power prior, meta-analytic-predictive (MAP) prior, robust MAP prior, non-informative prior, and fully informative prior, the ECP method is flexible and performs well across all settings. Furthermore, our method also allows for the integration of covariates in estimating data congruence for dynamic information borrowing, achieving both strong performance in power and adequate control of type I error. Overall, the ECP represents a promising option for leveraging external data in clinical trials, reducing costs by decreasing the sample size requirement, and thereby accelerating research and drug development timelines.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 13-14","pages":"e70129"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70129","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating external data into a clinical trial can introduce systematic bias in estimates and inflate the study's type I error due to differences in study design and enrollment criteria. Existing prior designs for information borrowing lack the ability to dynamically adjust the weight based on the similarity between concurrent and external data. To address this challenge, we thereby introduce a novel method called the elastic commensurate prior (ECP), which combines the commensurate prior with the elastic prior method. By dynamically adjusting the weight of external data using a measure of congruence, this method demonstrates strong performance in maintaining power while providing adequate type I error control across different scenarios, including congruence, approximate congruence, and incongruence between external and concurrent data. Compared to existing methods such as the modified power prior, meta-analytic-predictive (MAP) prior, robust MAP prior, non-informative prior, and fully informative prior, the ECP method is flexible and performs well across all settings. Furthermore, our method also allows for the integration of covariates in estimating data congruence for dynamic information borrowing, achieving both strong performance in power and adequate control of type I error. Overall, the ECP represents a promising option for leveraging external data in clinical trials, reducing costs by decreasing the sample size requirement, and thereby accelerating research and drug development timelines.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.