Ensemble of weak spectral total-variation learners: a PET-CT case study.

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Anna Rosenberg, John Kennedy, Zohar Keidar, Yehoshua Y Zeevi, Guy Gilboa
{"title":"Ensemble of weak spectral total-variation learners: a PET-CT case study.","authors":"Anna Rosenberg, John Kennedy, Zohar Keidar, Yehoshua Y Zeevi, Guy Gilboa","doi":"10.1098/rsta.2024.0236","DOIUrl":null,"url":null,"abstract":"<p><p>Solving computer vision problems through machine learning, one often encounters lack of sufficient training data. To mitigate this, we propose the use of ensembles of weak learners based on spectral total-variation (STV) features (Gilboa G. 2014 A total variation spectral framework for scale and texture analysis. <i>SIAM J. Imaging Sci</i>. <b>7</b>, 1937-1961. (doi:10.1137/130930704)). The features are related to nonlinear eigenfunctions of the total-variation subgradient and can characterize well textures at various scales. It was shown (Burger M, Gilboa G, Moeller M, Eckardt L, Cremers D. 2016 Spectral decompositions using one-homogeneous functionals. <i>SIAM J. Imaging Sci</i>. <b>9</b>, 1374-1408. (doi:10.1137/15m1054687)) that, in the one-dimensional case, orthogonal features are generated, whereas in two dimensions the features are empirically lowly correlated. Ensemble learning theory advocates the use of lowly correlated weak learners. We thus propose here to design ensembles using learners based on STV features. To show the effectiveness of this paradigm, we examine a hard real-world medical imaging problem: the predictive value of computed tomography (CT) data for high uptake in positron emission tomography (PET) for patients suspected of skeletal metastases. The database consists of 457 scans with 1524 unique pairs of registered CT and PET slices. Our approach is compared with deep-learning methods and to radiomics features, showing STV learners perform best (AUC=[Formula: see text]), compared with neural nets (AUC=[Formula: see text]) and radiomics (AUC=[Formula: see text]). We observe that fine STV scales in CT images are especially indicative of the presence of high uptake in PET.This article is part of the theme issue 'Partial differential equations in data science'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2298","pages":"20240236"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0236","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solving computer vision problems through machine learning, one often encounters lack of sufficient training data. To mitigate this, we propose the use of ensembles of weak learners based on spectral total-variation (STV) features (Gilboa G. 2014 A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7, 1937-1961. (doi:10.1137/130930704)). The features are related to nonlinear eigenfunctions of the total-variation subgradient and can characterize well textures at various scales. It was shown (Burger M, Gilboa G, Moeller M, Eckardt L, Cremers D. 2016 Spectral decompositions using one-homogeneous functionals. SIAM J. Imaging Sci. 9, 1374-1408. (doi:10.1137/15m1054687)) that, in the one-dimensional case, orthogonal features are generated, whereas in two dimensions the features are empirically lowly correlated. Ensemble learning theory advocates the use of lowly correlated weak learners. We thus propose here to design ensembles using learners based on STV features. To show the effectiveness of this paradigm, we examine a hard real-world medical imaging problem: the predictive value of computed tomography (CT) data for high uptake in positron emission tomography (PET) for patients suspected of skeletal metastases. The database consists of 457 scans with 1524 unique pairs of registered CT and PET slices. Our approach is compared with deep-learning methods and to radiomics features, showing STV learners perform best (AUC=[Formula: see text]), compared with neural nets (AUC=[Formula: see text]) and radiomics (AUC=[Formula: see text]). We observe that fine STV scales in CT images are especially indicative of the presence of high uptake in PET.This article is part of the theme issue 'Partial differential equations in data science'.

弱光谱全变学习器的集合:PET-CT案例研究。
通过机器学习解决计算机视觉问题,经常会遇到缺乏足够训练数据的问题。为了缓解这一问题,我们建议使用基于光谱总变化(STV)特征的弱学习器集合(Gilboa G. 2014)。这是一种用于尺度和纹理分析的总变化光谱框架。[j] .影像科学学报,1997,17(7):387 - 391。(doi: 10.1137 / 130930704))。这些特征与全变次梯度的非线性特征函数有关,可以很好地表征不同尺度的纹理。(Burger M, Gilboa G, Moeller M, Eckardt L, Cremers D. 2016)利用单齐次泛函进行光谱分解。[j] .光学学报,2016,33(4):444 - 444。(doi:10.1137/15m1054687))),在一维情况下,生成正交特征,而在二维情况下,这些特征在经验上是低相关的。集成学习理论提倡使用低相关性弱学习者。因此,我们在此建议使用基于STV特征的学习器来设计集成。为了证明这种模式的有效性,我们研究了一个现实世界的医学成像难题:计算机断层扫描(CT)数据对疑似骨骼转移患者的正电子发射断层扫描(PET)高摄取的预测价值。该数据库由457个扫描和1524对唯一的注册CT和PET切片组成。我们的方法与深度学习方法和放射组学特征进行了比较,与神经网络(AUC=[公式:见文本])和放射组学(AUC=[公式:见文本])相比,STV学习器表现最好(AUC=[公式:见文本])。我们观察到CT图像中细小的STV鳞片特别表明PET中存在高摄取。本文是“数据科学中的偏微分方程”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信