Tripartite binding mode of cohesin-dockerin complexes from Ruminococcus flavefaciens involving naturally truncated dockerins.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Marlene Duarte, Ana Luísa Carvalho, Magda C Ferreira, Beatriz Caires, Maria João Romão, José A M Prates, Shabir Najmudin, Edward A Bayer, Carlos Mga Fontes, Pedro Bule
{"title":"Tripartite binding mode of cohesin-dockerin complexes from Ruminococcus flavefaciens involving naturally truncated dockerins.","authors":"Marlene Duarte, Ana Luísa Carvalho, Magda C Ferreira, Beatriz Caires, Maria João Romão, José A M Prates, Shabir Najmudin, Edward A Bayer, Carlos Mga Fontes, Pedro Bule","doi":"10.1016/j.jbc.2025.110325","DOIUrl":null,"url":null,"abstract":"<p><p>Polysaccharides in plant cell walls serve as a rich carbon and energy source, yet their structural complexity presents a barrier to efficient degradation. To address this, anaerobic microorganisms like Ruminococcus flavefaciens have developed sophisticated multi-enzyme complexes known as cellulosomes, which enable the efficient breakdown of these recalcitrant polysaccharides. These complexes are assembled through high-affinity interactions between cohesin (Coh) modules in scaffoldin proteins and dockerin (Doc) modules in cellulosomal enzymes. R. flavefaciens FD-1 harbours one of the most intricate cellulosomes described to date, comprising over 200 Doc-containing proteins encoded in its genome. Despite substantial research on this cellulosome, the role of a group of truncated but functional dockerins, known as group-2 Docs, remains unclear. In this study, we present a detailed structural and binding analysis of a Coh-Doc complex involving the cohesin from the cell-anchoring scaffoldin ScaE and a group-2 Doc that bears only one of the two Ca<sup>+2</sup>-coordinating loops that characterise the canonical Docs. Our findings reveal a novel tripartite binding mechanism, in which the cohesin can simultaneously bind two distinct dockerin units in three alternative conformations. This discovery provides new insights into the modular versatility of the R. flavefaciens cellulosome and sheds light on the mechanisms that enhance its efficiency in polysaccharide degradation.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110325"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110325","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polysaccharides in plant cell walls serve as a rich carbon and energy source, yet their structural complexity presents a barrier to efficient degradation. To address this, anaerobic microorganisms like Ruminococcus flavefaciens have developed sophisticated multi-enzyme complexes known as cellulosomes, which enable the efficient breakdown of these recalcitrant polysaccharides. These complexes are assembled through high-affinity interactions between cohesin (Coh) modules in scaffoldin proteins and dockerin (Doc) modules in cellulosomal enzymes. R. flavefaciens FD-1 harbours one of the most intricate cellulosomes described to date, comprising over 200 Doc-containing proteins encoded in its genome. Despite substantial research on this cellulosome, the role of a group of truncated but functional dockerins, known as group-2 Docs, remains unclear. In this study, we present a detailed structural and binding analysis of a Coh-Doc complex involving the cohesin from the cell-anchoring scaffoldin ScaE and a group-2 Doc that bears only one of the two Ca+2-coordinating loops that characterise the canonical Docs. Our findings reveal a novel tripartite binding mechanism, in which the cohesin can simultaneously bind two distinct dockerin units in three alternative conformations. This discovery provides new insights into the modular versatility of the R. flavefaciens cellulosome and sheds light on the mechanisms that enhance its efficiency in polysaccharide degradation.

黄瘤球菌黏结蛋白-码头蛋白复合物的三方结合模式,包括自然截断的码头蛋白。
植物细胞壁中的多糖是丰富的碳和能量来源,但其结构的复杂性阻碍了其有效降解。为了解决这个问题,像黄瘤球菌这样的厌氧微生物已经开发出复杂的多酶复合物,称为纤维素体,它能够有效地分解这些顽固的多糖。这些复合物是通过支架蛋白中的内聚蛋白(Coh)模块和纤维素体酶中的dockerin (Doc)模块之间的高亲和力相互作用组装而成的。R. flavefaciens FD-1拥有迄今为止描述的最复杂的纤维素之一,包含200多种含doc的蛋白质编码在其基因组中。尽管对这种纤维素进行了大量的研究,但一组被称为2组dockerins的截断但具有功能的dockerins的作用仍不清楚。在这项研究中,我们详细分析了一种Coh-Doc复合物的结构和结合,该复合物包括来自细胞锚定支架蛋白ScaE的内聚蛋白和一种仅含有典型Doc的两个Ca+2配位环中的一个的2组Doc。我们的发现揭示了一种新的三方结合机制,在这种机制中,内聚蛋白可以同时结合三种不同构象的两个不同的码头蛋白单位。这一发现为R. flavefaciens纤维素的模块化多功能性提供了新的见解,并揭示了提高其多糖降解效率的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信