Phase Correction of MR Spectroscopic Imaging Data Using Model-Based Signal Estimation and Extrapolation.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Wen Jin, Rong Guo, Yudu Li, Yibo Zhao, Xin Li, Xiao-Hong Zhu, Wei Chen, Zhi-Pei Liang
{"title":"Phase Correction of MR Spectroscopic Imaging Data Using Model-Based Signal Estimation and Extrapolation.","authors":"Wen Jin, Rong Guo, Yudu Li, Yibo Zhao, Xin Li, Xiao-Hong Zhu, Wei Chen, Zhi-Pei Liang","doi":"10.1109/TBME.2025.3576330","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop an effective method for phase correction of magnetic resonance spectroscopic imaging (MRSI) data.</p><p><strong>Methods: </strong>In many MRSI applications, it is desirable to generate absorption-mode spectra, which requires correction of phase errors in the measured MRSI data. Conventional phase correction methods are sensitive to measurement noise and baseline distortion, often resulting in distorted absorption-mode spectra from MRSI data with low-SNR and long acquisition dead time. This paper proposed a novel model-based method for improved phase correction of MRSI data. The proposed method determined the zeroth-order phase and acquisition dead time using a Lorentzian-based spectral model and performed signal extrapolation using a generalized series model. Absorption-mode spectra were then generated from the phase-corrected and extrapolated MRSI data.</p><p><strong>Results: </strong>The proposed method was evaluated using both simulated data and experimental data acquired from human subjects in multi-nuclei (<sup>31</sup>P, <sup>2</sup>H, and <sup>1</sup>H) MRSI experiments. Simulation results demonstrated improved parameter estimation accuracy by the proposed method under various noise levels and dead times. The proposed method also consistently generated high-quality absorption-mode spectra with minimal spectral distortions from experimental data. The proposed method was compared with state-of-the-art methods (including the entropy method and LCModel method) and showed more robust phase correction performance with less spectral distortions.</p><p><strong>Conclusion: </strong>This paper introduced a novel method for phase correction of MRSI data. Results from simulated and in vivo data demonstrated that high-quality absorption-mode spectra could be obtained using the proposed method.</p><p><strong>Significance: </strong>This method will provide a useful tool for processing MRSI data.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3576330","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop an effective method for phase correction of magnetic resonance spectroscopic imaging (MRSI) data.

Methods: In many MRSI applications, it is desirable to generate absorption-mode spectra, which requires correction of phase errors in the measured MRSI data. Conventional phase correction methods are sensitive to measurement noise and baseline distortion, often resulting in distorted absorption-mode spectra from MRSI data with low-SNR and long acquisition dead time. This paper proposed a novel model-based method for improved phase correction of MRSI data. The proposed method determined the zeroth-order phase and acquisition dead time using a Lorentzian-based spectral model and performed signal extrapolation using a generalized series model. Absorption-mode spectra were then generated from the phase-corrected and extrapolated MRSI data.

Results: The proposed method was evaluated using both simulated data and experimental data acquired from human subjects in multi-nuclei (31P, 2H, and 1H) MRSI experiments. Simulation results demonstrated improved parameter estimation accuracy by the proposed method under various noise levels and dead times. The proposed method also consistently generated high-quality absorption-mode spectra with minimal spectral distortions from experimental data. The proposed method was compared with state-of-the-art methods (including the entropy method and LCModel method) and showed more robust phase correction performance with less spectral distortions.

Conclusion: This paper introduced a novel method for phase correction of MRSI data. Results from simulated and in vivo data demonstrated that high-quality absorption-mode spectra could be obtained using the proposed method.

Significance: This method will provide a useful tool for processing MRSI data.

基于模型的信号估计和外推的MR光谱成像数据相位校正。
目的:建立一种有效的磁共振光谱成像(MRSI)数据相位校正方法。方法:在许多磁共振成像应用中,需要生成吸收模式光谱,这需要校正测量的磁共振成像数据中的相位误差。传统的相位校正方法对测量噪声和基线畸变很敏感,往往导致低信噪比、采集死区时间长的MRSI数据的吸收模式光谱失真。提出了一种新的基于模型的MRSI数据相位校正方法。该方法利用基于洛伦兹的频谱模型确定零阶相位和采集死区时间,并利用广义序列模型进行信号外推。然后从相位校正和外推的MRSI数据生成吸收模式光谱。结果:采用多核(31P, 2H和1H)磁共振成像实验获得的模拟数据和实验数据对所提出的方法进行了评估。仿真结果表明,在不同噪声水平和死区时间下,该方法均能提高参数估计的精度。该方法还能稳定地生成高质量的吸收模式光谱,且实验数据的光谱畸变最小。将该方法与熵值法和LCModel法进行了比较,结果表明该方法具有更强的相位校正能力和更小的频谱畸变。结论:本文提出了一种新的磁共振成像数据相位校正方法。模拟和体内数据的结果表明,采用该方法可以获得高质量的吸收模式光谱。意义:该方法将为mri数据的处理提供一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信