GONet: A Generalizable Deep Learning Model for Glaucoma Detection.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Or Abramovich, Hadas Pizem, Jonathan Fhima, Eran Berkowitz, Ben Gofrit, Meishar Meisel, Meital Baskin, Jan Van Eijgen, Ingeborg Stalmans, Eytan Z Blumenthal, Joachim A Behar
{"title":"GONet: A Generalizable Deep Learning Model for Glaucoma Detection.","authors":"Or Abramovich, Hadas Pizem, Jonathan Fhima, Eran Berkowitz, Ben Gofrit, Meishar Meisel, Meital Baskin, Jan Van Eijgen, Ingeborg Stalmans, Eytan Z Blumenthal, Joachim A Behar","doi":"10.1109/TBME.2025.3576688","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucomatous optic neuropathy (GON), affecting an estimated 64.3 million people globally, causes irreversible vision loss when not detected early. Traditional diagnosis requires time-consuming ophthalmic examinations by specialists. Recent deep learning models for automating GON detection from colour fundus photographs (CFP) have shown promise but often suffer from limited generalizability across different ethnicities, disease groups and examination settings. To address these limitations, we introduce GONet, a robust deep learning model developed using seven independent datasets, including over 119,000 CFPs with gold-standard annotations and from patients of diverse geographic backgrounds. GONet consists of a DINOv2 pre-trained self-supervised vision transformers fine-tuned using a multisource domain strategy. GONet demonstrated high out-of-distribution generalizability, with an AUC of 0.88-0.99 in target domains. GONet performance was similar or superior to state-of-the-art works and the cup-to-disc ratio, by up to 18.4%. GONet is available at [URL provided on publication]. We also contribute a new dataset consisting of 747 CFPs with GON labels as open access, available at [URL provided on publication].</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3576688","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucomatous optic neuropathy (GON), affecting an estimated 64.3 million people globally, causes irreversible vision loss when not detected early. Traditional diagnosis requires time-consuming ophthalmic examinations by specialists. Recent deep learning models for automating GON detection from colour fundus photographs (CFP) have shown promise but often suffer from limited generalizability across different ethnicities, disease groups and examination settings. To address these limitations, we introduce GONet, a robust deep learning model developed using seven independent datasets, including over 119,000 CFPs with gold-standard annotations and from patients of diverse geographic backgrounds. GONet consists of a DINOv2 pre-trained self-supervised vision transformers fine-tuned using a multisource domain strategy. GONet demonstrated high out-of-distribution generalizability, with an AUC of 0.88-0.99 in target domains. GONet performance was similar or superior to state-of-the-art works and the cup-to-disc ratio, by up to 18.4%. GONet is available at [URL provided on publication]. We also contribute a new dataset consisting of 747 CFPs with GON labels as open access, available at [URL provided on publication].

GONet:青光眼检测的可推广深度学习模型。
青光眼视神经病变(GON)影响到全球约6430万人,如果不及早发现,会导致不可逆转的视力丧失。传统诊断需要由专家进行耗时的眼科检查。最近用于从眼底彩色照片(CFP)自动检测GON的深度学习模型显示出了希望,但在不同的种族、疾病群体和检查环境中,其泛化能力往往有限。为了解决这些限制,我们引入了GONet,这是一个强大的深度学习模型,使用七个独立的数据集开发,包括超过119,000个具有金标准注释的cfp,来自不同地理背景的患者。GONet由一个DINOv2预训练的自监督视觉变压器组成,该变压器使用多源域策略进行微调。GONet具有较高的分布外泛化性,目标域的AUC为0.88-0.99。GONet的性能与最先进的作品相似或优于最先进的作品,杯盘比高达18.4%。GONet可在[发布时提供的URL]获得。我们还提供了一个新的数据集,由747个cfp组成,带有GON标签,作为开放获取,可在[发表时提供的URL]获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信