Elevated phenylacetylglutamine caused by gut dysbiosis associated with type 2 diabetes increases neutrophil extracellular traps formation and exacerbates brain infarction.
{"title":"Elevated phenylacetylglutamine caused by gut dysbiosis associated with type 2 diabetes increases neutrophil extracellular traps formation and exacerbates brain infarction.","authors":"Minping Wei, Qin Huang, Fang Yu, Yun-Fang Luo, Xianjing Feng, Di Liao, Jiaxin Li, Boxin Zhang, Ze-Yu Liu, Jian Xia","doi":"10.1042/CS20242943","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes (T2D) aggravates ischemic stroke. The association between gut microbiota-derived metabolite phenylacetylglutamine (PAGln) and ischemic stroke patients with T2D remains unclear. Therefore, we aimed to explore the change of gut microbiota and its metabolite, PAGln in ischemic stroke patients with T2D, as well as investigate the role of PAGln in this disease. We performed two clinical cohort studies to investigate the changes of gut microbiota and PAGln in ischemic stroke patients with T2D. Then, we transplanted fecal microbiota from patients into rats and established a middle cerebral artery occlusion model. Finally, an intraperitoneal injection of PAGln was administered to rats to test whether it exacerbates brain infarction. Plasma PAGln levels were significantly higher in stroke patients with T2D compared to those without T2D. There was a positive correlation of Plasma PAGln with NETs. Enterobacteriaceae, Verrucomicrobiota, and Klebsiella were enriched in stroke patients with T2D and showed a significant positive correlation with PAGln levels. The rats transplanted with fecal microbes from stroke patients with T2D developed a more severe brain injury and had higher levels of plasma PAGln and NETs compared to the rats transplanted with fecal microbes from stroke patients without T2D. Additionally, rats treated with PAGln exhibited more severe brain injury accompanied by increased systemic inflammation, oxidative stress and NET formation. Our results suggest elevated circulating PAGln levels, resulting from gut dysbiosis in stroke patients with T2D, may exacerbate brain infarction through NETs formation, systemic inflammation, and oxidative stress.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20242943","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes (T2D) aggravates ischemic stroke. The association between gut microbiota-derived metabolite phenylacetylglutamine (PAGln) and ischemic stroke patients with T2D remains unclear. Therefore, we aimed to explore the change of gut microbiota and its metabolite, PAGln in ischemic stroke patients with T2D, as well as investigate the role of PAGln in this disease. We performed two clinical cohort studies to investigate the changes of gut microbiota and PAGln in ischemic stroke patients with T2D. Then, we transplanted fecal microbiota from patients into rats and established a middle cerebral artery occlusion model. Finally, an intraperitoneal injection of PAGln was administered to rats to test whether it exacerbates brain infarction. Plasma PAGln levels were significantly higher in stroke patients with T2D compared to those without T2D. There was a positive correlation of Plasma PAGln with NETs. Enterobacteriaceae, Verrucomicrobiota, and Klebsiella were enriched in stroke patients with T2D and showed a significant positive correlation with PAGln levels. The rats transplanted with fecal microbes from stroke patients with T2D developed a more severe brain injury and had higher levels of plasma PAGln and NETs compared to the rats transplanted with fecal microbes from stroke patients without T2D. Additionally, rats treated with PAGln exhibited more severe brain injury accompanied by increased systemic inflammation, oxidative stress and NET formation. Our results suggest elevated circulating PAGln levels, resulting from gut dysbiosis in stroke patients with T2D, may exacerbate brain infarction through NETs formation, systemic inflammation, and oxidative stress.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.