{"title":"CB1 Receptor Agonist ACEA Resists ER Stress-Mediated Apoptosis via CB1R-Independent Mechanism.","authors":"Kazuaki Mori, Akinobu Togo, Keisuke Ohta, Toru Asahi, Chihiro Nozaki, Kosuke Kataoka","doi":"10.1248/bpb.b25-00023","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabinoid receptor type 1 (CB1R) plays a key role in neuronal homeostasis, synaptic plasticity, and neuroprotection. CB1R antagonists typically protect against CB1R agonists-induced neurotoxicity. However, we previously found that the CB1R antagonists rimonabant and its analog AM251 can also be neurotoxic: under serum-free conditions, these compounds induce apoptosis in human neuroblastoma SH-SY5Y cells through mitochondrial damage and endoplasmic reticulum (ER) stress. To elucidate the mechanisms of this neurotoxicity, we examined the effects of CB1R agonists. We co-treated SH-SY5Y cells with rimonabant or AM251 in combination with either the CB1R agonist arachidonyl 2-chloroethylamide (ACEA) or WIN 55212-2 mesylate (WIN). ACEA, but not WIN, protected cells from rimonabant- and AM251-induced apoptosis. While ACEA had only a limited effect on mitochondrial damage, it significantly reduced phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), a key marker of ER stress. Given that ACEA also functions as an agonist of transient receptor potential vanilloid 1 (TRPV1), we investigated its role in ACEA-mediated neuroprotection. The TRPV1 antagonist capsazepine blocked ACEA's protective effects, suggesting that ACEA acts through TRPV1 rather than CB1R. ACEA also prevented apoptosis induced by camptothecin, a well-established apoptosis inducer, through a similar capsazepine-sensitive mechanism, demonstrating its broader protective effects against apoptosis. These findings indicate that rimonabant and AM251 induce neurotoxicity independently of CB1R under serum-free conditions and that ER stress is likely to be a key target of CB1R-independent neuroprotection by ACEA. Our study highlights the complexity of CB1R ligand-associated neurotoxicity and neuroprotection.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 6","pages":"769-781"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b25-00023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cannabinoid receptor type 1 (CB1R) plays a key role in neuronal homeostasis, synaptic plasticity, and neuroprotection. CB1R antagonists typically protect against CB1R agonists-induced neurotoxicity. However, we previously found that the CB1R antagonists rimonabant and its analog AM251 can also be neurotoxic: under serum-free conditions, these compounds induce apoptosis in human neuroblastoma SH-SY5Y cells through mitochondrial damage and endoplasmic reticulum (ER) stress. To elucidate the mechanisms of this neurotoxicity, we examined the effects of CB1R agonists. We co-treated SH-SY5Y cells with rimonabant or AM251 in combination with either the CB1R agonist arachidonyl 2-chloroethylamide (ACEA) or WIN 55212-2 mesylate (WIN). ACEA, but not WIN, protected cells from rimonabant- and AM251-induced apoptosis. While ACEA had only a limited effect on mitochondrial damage, it significantly reduced phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), a key marker of ER stress. Given that ACEA also functions as an agonist of transient receptor potential vanilloid 1 (TRPV1), we investigated its role in ACEA-mediated neuroprotection. The TRPV1 antagonist capsazepine blocked ACEA's protective effects, suggesting that ACEA acts through TRPV1 rather than CB1R. ACEA also prevented apoptosis induced by camptothecin, a well-established apoptosis inducer, through a similar capsazepine-sensitive mechanism, demonstrating its broader protective effects against apoptosis. These findings indicate that rimonabant and AM251 induce neurotoxicity independently of CB1R under serum-free conditions and that ER stress is likely to be a key target of CB1R-independent neuroprotection by ACEA. Our study highlights the complexity of CB1R ligand-associated neurotoxicity and neuroprotection.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.