Structural insights into allosteric inhibition of HRI kinase by heme binding via HDX-MS.

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shivani Kanta, Vanesa Vinciauskaite, Graham Neill, Miratul M K Muqit, Glenn R Masson
{"title":"Structural insights into allosteric inhibition of HRI kinase by heme binding via HDX-MS.","authors":"Shivani Kanta, Vanesa Vinciauskaite, Graham Neill, Miratul M K Muqit, Glenn R Masson","doi":"10.1042/BCJ20253072","DOIUrl":null,"url":null,"abstract":"<p><p>Heme-regulated inhibitor (HRI) is one of the four mammalian kinases that phosphorylate eIF2α, facilitating a cellular response to stress through the regulation of mRNA translation. Originally identified as a heme sensor in erythroid progenitor cells, HRI has since emerged as a potential therapeutic target in both cancer and neurodegeneration. Here, we characterise two modes of HRI inhibition using structural mass spectrometry, biochemistry, and biophysics. We examined several competitive ATP-mimetic inhibitors - dabrafenib, encorafenib, and GCN2iB - and compared them with the heme-mimetic allosteric inhibitor, hemin. By combining hydrogen-deuterium exchange mass spectrometry with protein models generated by AlphaFold 3, we investigated the structural basis of inhibition by dabrafenib and hemin. Our analysis revealed that hemin inhibition induces large-scale structural rearrangements in HRI, which are not observed with ATP-mimetic inhibitors. Our results suggest that HRI may be inhibited using two distinctly different modalities, which may guide future drug development.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20253072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heme-regulated inhibitor (HRI) is one of the four mammalian kinases that phosphorylate eIF2α, facilitating a cellular response to stress through the regulation of mRNA translation. Originally identified as a heme sensor in erythroid progenitor cells, HRI has since emerged as a potential therapeutic target in both cancer and neurodegeneration. Here, we characterise two modes of HRI inhibition using structural mass spectrometry, biochemistry, and biophysics. We examined several competitive ATP-mimetic inhibitors - dabrafenib, encorafenib, and GCN2iB - and compared them with the heme-mimetic allosteric inhibitor, hemin. By combining hydrogen-deuterium exchange mass spectrometry with protein models generated by AlphaFold 3, we investigated the structural basis of inhibition by dabrafenib and hemin. Our analysis revealed that hemin inhibition induces large-scale structural rearrangements in HRI, which are not observed with ATP-mimetic inhibitors. Our results suggest that HRI may be inhibited using two distinctly different modalities, which may guide future drug development.

通过HDX-MS分析血红素结合对HRI激酶变构抑制的结构见解。
血红素调节抑制剂(HRI)是使eIF2α磷酸化的四种哺乳动物激酶之一,通过调节mRNA翻译促进细胞对应激的反应。HRI最初被认为是红系祖细胞中的血红素传感器,现已成为癌症和神经退行性疾病的潜在治疗靶点。在这里,我们用结构质谱、生物化学和生物物理学表征了HRI抑制的两种模式。我们研究了几种竞争性的atp模拟抑制剂——dabrafenib、Encorafenib和gcn2ib,并将它们与血红素模拟变构抑制剂hemin进行了比较。通过氢-氘交换质谱(HDX-MS)与AlphaFold 3生成的蛋白质模型相结合,我们研究了Dabrafenib和hemin抑制的结构基础。我们的分析显示,hemin抑制诱导HRI中大规模的结构重排,这在atp模拟抑制剂中没有观察到。我们的研究结果表明,HRI可以通过两种截然不同的方式被抑制,这可能指导未来的药物开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信