Lipid metabolism disorder promoting retinal structural and functional damage in ApoE-/- mice with age superposition.

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Rucui Yang, Shaolang Chen, Tsz Kin Ng, Jiajian Liang, Shaofen Huang, Minru Deng, Zhenggen Wu, Yaru Sun, Changzhen Fu, Chi Pui Pang, Qingping Liu, Mingzhi Zhang
{"title":"Lipid metabolism disorder promoting retinal structural and functional damage in ApoE<sup>-/-</sup> mice with age superposition.","authors":"Rucui Yang, Shaolang Chen, Tsz Kin Ng, Jiajian Liang, Shaofen Huang, Minru Deng, Zhenggen Wu, Yaru Sun, Changzhen Fu, Chi Pui Pang, Qingping Liu, Mingzhi Zhang","doi":"10.1186/s40478-025-02043-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to establish a model of abnormal lipid metabolism in Apolipoprotein E (ApoE) knockout mice by feeding them a high-fat diet (HFD) and to investigate the impact of this abnormal lipid metabolism on retinal blood perfusion, structure, and function, particularly the retinal ganglion cell (RGC). Both HFD and regular diet (RD) feeding were conducted in C57BL/6J mice and ApoE<sup>-/-</sup> mice. Lipid metabolism was assessed using hematoxylin-eosin (HE) staining, oil red staining, and blood lipid detection. Retinal microcirculation was evaluated through fundus fluorescein angiography. The expression levels of inflammatory cytokines were determined using quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Intraocular pressure, retinal structure, and RGCs were assessed using tonometer, optical coherence tomography, HE staining, and immunofluorescence staining. Retinal function was measured by electroretinogram. Hyperlipidemia was induced in ApoE<sup>-/-</sup> mice fed HFD. Retinal microcirculation was impaired in mice with abnormal lipid metabolism, while the expression of the inflammatory cytokine Tnf-α was significantly increased in atherosclerotic plaques, serum, and retina. Ultimately, compared with normal mice on a RD, ApoE<sup>-/-</sup> mice fed HFD exhibited no significant changes in intraocular pressure but demonstrated decreased RGC density and impaired retinal structure and function of the inner and outer layers of the retina. The abnormal lipid metabolism in ApoE<sup>-/-</sup> mice fed a HFD can exacerbate the disturbance of intraocular microcirculation and RGC loss caused by aging, as well as inflammation of the intraocular microenvironment and damage to retinal function.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"125"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02043-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to establish a model of abnormal lipid metabolism in Apolipoprotein E (ApoE) knockout mice by feeding them a high-fat diet (HFD) and to investigate the impact of this abnormal lipid metabolism on retinal blood perfusion, structure, and function, particularly the retinal ganglion cell (RGC). Both HFD and regular diet (RD) feeding were conducted in C57BL/6J mice and ApoE-/- mice. Lipid metabolism was assessed using hematoxylin-eosin (HE) staining, oil red staining, and blood lipid detection. Retinal microcirculation was evaluated through fundus fluorescein angiography. The expression levels of inflammatory cytokines were determined using quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Intraocular pressure, retinal structure, and RGCs were assessed using tonometer, optical coherence tomography, HE staining, and immunofluorescence staining. Retinal function was measured by electroretinogram. Hyperlipidemia was induced in ApoE-/- mice fed HFD. Retinal microcirculation was impaired in mice with abnormal lipid metabolism, while the expression of the inflammatory cytokine Tnf-α was significantly increased in atherosclerotic plaques, serum, and retina. Ultimately, compared with normal mice on a RD, ApoE-/- mice fed HFD exhibited no significant changes in intraocular pressure but demonstrated decreased RGC density and impaired retinal structure and function of the inner and outer layers of the retina. The abnormal lipid metabolism in ApoE-/- mice fed a HFD can exacerbate the disturbance of intraocular microcirculation and RGC loss caused by aging, as well as inflammation of the intraocular microenvironment and damage to retinal function.

脂质代谢紊乱促进ApoE-/-年龄叠加小鼠视网膜结构和功能损伤。
本研究旨在通过饲喂高脂饮食(HFD)建立载脂蛋白E (ApoE)敲除小鼠脂质代谢异常模型,探讨脂质代谢异常对视网膜血液灌注、结构和功能,尤其是视网膜神经节细胞(RGC)的影响。对C57BL/6J小鼠和ApoE-/-小鼠进行HFD和常规日粮(RD)喂养。采用苏木精-伊红(HE)染色、油红染色及血脂检测评价脂质代谢。眼底荧光素血管造影评价视网膜微循环。采用定量逆转录聚合酶链反应和酶联免疫吸附法测定炎症细胞因子的表达水平。使用眼压计、光学相干断层扫描、HE染色和免疫荧光染色评估眼压、视网膜结构和RGCs。视网膜电图测定视网膜功能。用HFD诱导ApoE-/-小鼠高脂血症。脂质代谢异常小鼠视网膜微循环受损,动脉粥样硬化斑块、血清和视网膜中炎性细胞因子Tnf-α表达显著升高。最终,与RD上的正常小鼠相比,喂食HFD的ApoE-/-小鼠眼压没有明显变化,但RGC密度降低,视网膜内外层结构和功能受损。ApoE-/-小鼠脂质代谢异常,可加重衰老引起的眼内微循环紊乱和RGC丢失,以及眼内微环境炎症和视网膜功能损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信