Utilization of aspen DMC3 in process control of crude distillation unit (CDU)

IF 3 Q2 ENGINEERING, CHEMICAL
Bol Ram, Z Ahmad, N Md Nor
{"title":"Utilization of aspen DMC3 in process control of crude distillation unit (CDU)","authors":"Bol Ram,&nbsp;Z Ahmad,&nbsp;N Md Nor","doi":"10.1016/j.dche.2025.100245","DOIUrl":null,"url":null,"abstract":"<div><div>Crude oil remains a vital non-renewable resource that supports numerous industries in the current era of industrial advancement. Consequently, petroleum refineries face increasing challenges, including stringent environmental regulations, fluctuating feedstock quality, rising demand, safety requirements, and the need for cost optimization. These challenges, coupled with the inherent complexity of the Crude Distillation Unit (CDU), demand advanced control strategies to ensure stable and efficient operation. This study investigates the application of Dynamic Matrix Control (DMC), a subset of Model Predictive Control (MPC), using Aspen DMC3 for CDU process control—a novel implementation not previously explored. The methodology involves three main stages: validation of a CDU simulation based on real data from the Basrah refinery, generation of dynamic response data through MATLAB integrated with Aspen Dynamics, and the development of a DMC controller using Aspen DMC3. The performance of the DMC controller is compared against conventional Proportional-Integral-Derivative (PID) controllers implemented in Aspen Dynamics using key indicators such as settling time, offset error, maximum deviation, and response smoothness. Results demonstrate that the DMC controller provides superior control performance, with faster settling times, zero offset, minimal deviations, and smoother responses. Additionally, Aspen DMC3′s AI-assisted capabilities enable streamlined controller configuration and real-time optimization through server connectivity, highlighting its potential for robust and efficient CDU operation.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"15 ","pages":"Article 100245"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Crude oil remains a vital non-renewable resource that supports numerous industries in the current era of industrial advancement. Consequently, petroleum refineries face increasing challenges, including stringent environmental regulations, fluctuating feedstock quality, rising demand, safety requirements, and the need for cost optimization. These challenges, coupled with the inherent complexity of the Crude Distillation Unit (CDU), demand advanced control strategies to ensure stable and efficient operation. This study investigates the application of Dynamic Matrix Control (DMC), a subset of Model Predictive Control (MPC), using Aspen DMC3 for CDU process control—a novel implementation not previously explored. The methodology involves three main stages: validation of a CDU simulation based on real data from the Basrah refinery, generation of dynamic response data through MATLAB integrated with Aspen Dynamics, and the development of a DMC controller using Aspen DMC3. The performance of the DMC controller is compared against conventional Proportional-Integral-Derivative (PID) controllers implemented in Aspen Dynamics using key indicators such as settling time, offset error, maximum deviation, and response smoothness. Results demonstrate that the DMC controller provides superior control performance, with faster settling times, zero offset, minimal deviations, and smoother responses. Additionally, Aspen DMC3′s AI-assisted capabilities enable streamlined controller configuration and real-time optimization through server connectivity, highlighting its potential for robust and efficient CDU operation.
杨木DMC3在原油蒸馏装置(CDU)过程控制中的应用
在当今工业发展的时代,原油仍然是一种重要的不可再生资源,支撑着许多行业。因此,炼油厂面临着越来越多的挑战,包括严格的环境法规、波动的原料质量、不断增长的需求、安全要求以及成本优化的需要。这些挑战,再加上原油蒸馏装置(CDU)固有的复杂性,需要先进的控制策略来确保稳定高效的运行。本研究探讨了动态矩阵控制(DMC)的应用,DMC是模型预测控制(MPC)的一个子集,使用Aspen DMC3进行CDU过程控制,这是一种以前没有探索过的新实现。该方法包括三个主要阶段:基于Basrah炼油厂真实数据的CDU仿真验证,通过与Aspen Dynamics集成的MATLAB生成动态响应数据,以及使用Aspen DMC3开发DMC控制器。DMC控制器的性能与Aspen Dynamics实现的传统比例积分导数(PID)控制器进行了比较,使用关键指标如稳定时间、偏移误差、最大偏差和响应平滑度。结果表明,DMC控制器具有更快的稳定时间、零偏移、最小偏差和更平滑的响应等优越的控制性能。此外,Aspen DMC3的人工智能辅助功能可以简化控制器配置,并通过服务器连接进行实时优化,突出了其强大而高效的CDU运行潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信