Characterization of immune cells in the rat intestinal mucosa and liver involved in inflammation caused by LPS and evaluation of the effects of N-acetylcysteine and disulfiram (well-known sulfur drugs) for this inflammation
Anthea Miller , Giorgia Pia Lombardo , Laura Spiccia , Valentina Natale , Alba Migliorato , Marek Bednarski , Małgorzata Iciek , Anna Bilska-Wilkosz , Mateusz Sablik , Eugenia Rita Lauriano , Magdalena Kotańska , Simona Pergolizzi
{"title":"Characterization of immune cells in the rat intestinal mucosa and liver involved in inflammation caused by LPS and evaluation of the effects of N-acetylcysteine and disulfiram (well-known sulfur drugs) for this inflammation","authors":"Anthea Miller , Giorgia Pia Lombardo , Laura Spiccia , Valentina Natale , Alba Migliorato , Marek Bednarski , Małgorzata Iciek , Anna Bilska-Wilkosz , Mateusz Sablik , Eugenia Rita Lauriano , Magdalena Kotańska , Simona Pergolizzi","doi":"10.1016/j.acthis.2025.152272","DOIUrl":null,"url":null,"abstract":"<div><div>Lipopolysaccharide (LPS)-induced inflammation is an experimental rat model often used as a tool for testing new drugs as candidates for treating various diseases associated with inflammation. New methods now allow for precise imaging of tissues and changes induced by various factors. To increase knowledge about LPS-induced inflammation and promote strategies for investigating new therapies, this study aims to characterize immune cells involved in inflammation in the rat intestinal mucosa and liver and to evaluate the therapeutic effect of two well-known sulfur drugs N-acetylcysteine (NAC) and disulfiram (DSF) on this model LPS was administered intraperitoneally to rats once a day, for 10 days. NAC and DSF were administered 5 h after LPS. At the end of experiment, animals were euthanized, and the intestine and liver were collected. The immune cells of the intestinal mucosa and liver were characterized with the following antibodies: Toll-like receptors (TLR2 and TLR4), smooth muscle alpha-actin (α-SMA), major histocompatibility complex II (MHC-II), and serotonin (5-HT). In samples obtained from inflamed rat intestinal mucosa, it was possible to detect TLR2-positive and TLR4-positive cells, and numerous α-SMA-positive cells, indicating an inflammatory state. Furthermore, an increase in serotonin positive neuroendocrine cells compared to normal was demonstrated, which could be associated with intestinal inflammation. The number of these positive cells was much smaller in the samples derived from animals treated with NAC or DSF, suggesting anti-inflammatory action of these drugs. In the inflamed rat liver, several immune cells positive for these antibodies were observed and NAC or DSF decreased the amount of these positive cells. In conclusion, this study shows that bacterial LPS can activate various innate immune system cell populations, such as dendritic cells, neutrophils, Kupffer cells, myofibroblasts and enterocytes. Moreover, this study demonstrates the beneficial effects on NAC and DSF in alleviating inflammation and relieving tissue fibrosis in the LPS-induced inflammation in the rat intestinal mucosa and liver.</div></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"127 3","pages":"Article 152272"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128125000443","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipopolysaccharide (LPS)-induced inflammation is an experimental rat model often used as a tool for testing new drugs as candidates for treating various diseases associated with inflammation. New methods now allow for precise imaging of tissues and changes induced by various factors. To increase knowledge about LPS-induced inflammation and promote strategies for investigating new therapies, this study aims to characterize immune cells involved in inflammation in the rat intestinal mucosa and liver and to evaluate the therapeutic effect of two well-known sulfur drugs N-acetylcysteine (NAC) and disulfiram (DSF) on this model LPS was administered intraperitoneally to rats once a day, for 10 days. NAC and DSF were administered 5 h after LPS. At the end of experiment, animals were euthanized, and the intestine and liver were collected. The immune cells of the intestinal mucosa and liver were characterized with the following antibodies: Toll-like receptors (TLR2 and TLR4), smooth muscle alpha-actin (α-SMA), major histocompatibility complex II (MHC-II), and serotonin (5-HT). In samples obtained from inflamed rat intestinal mucosa, it was possible to detect TLR2-positive and TLR4-positive cells, and numerous α-SMA-positive cells, indicating an inflammatory state. Furthermore, an increase in serotonin positive neuroendocrine cells compared to normal was demonstrated, which could be associated with intestinal inflammation. The number of these positive cells was much smaller in the samples derived from animals treated with NAC or DSF, suggesting anti-inflammatory action of these drugs. In the inflamed rat liver, several immune cells positive for these antibodies were observed and NAC or DSF decreased the amount of these positive cells. In conclusion, this study shows that bacterial LPS can activate various innate immune system cell populations, such as dendritic cells, neutrophils, Kupffer cells, myofibroblasts and enterocytes. Moreover, this study demonstrates the beneficial effects on NAC and DSF in alleviating inflammation and relieving tissue fibrosis in the LPS-induced inflammation in the rat intestinal mucosa and liver.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted