Almost sure dimensional properties for the spectrum and the density of states of Sturmian Hamiltonians

IF 1.5 1区 数学 Q1 MATHEMATICS
Jie Cao , Yanhui Qu
{"title":"Almost sure dimensional properties for the spectrum and the density of states of Sturmian Hamiltonians","authors":"Jie Cao ,&nbsp;Yanhui Qu","doi":"10.1016/j.aim.2025.110387","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we find a full Lebesgue measure set of frequencies <span><math><mover><mrow><mi>I</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>⊂</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>∖</mo><mi>Q</mi></math></span> such that for any <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>λ</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>I</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>×</mo><mo>[</mo><mn>24</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the Hausdorff and box dimensions of the spectrum of the Sturmian Hamiltonian <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>θ</mi></mrow></msub></math></span> coincide and are independent of <em>α</em>. Denote the common value by <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, we show that <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> satisfies a Bowen's type formula, and is locally Lipschitz. We also obtain the exact asymptotic behavior of <span><math><mi>D</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> as <em>λ</em> tends to ∞. This considerably improves the result of Damanik and Gorodetski (Comm. Math. Phys. 337, 2015). We also show that for any <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>λ</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>I</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>×</mo><mo>[</mo><mn>24</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the density of states measure of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>θ</mi></mrow></msub></math></span> is exact-dimensional; its Hausdorff and packing dimensions coincide and are independent of <em>α</em>. Denote the common value by <span><math><mi>d</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, we show that <span><math><mi>d</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> satisfies a Young's type formula, and is locally Lipschitz. We also obtain the exact asymptotic behavior of <span><math><mi>d</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> as <em>λ</em> tends to ∞. During the course of study, we also answer or partially answer several questions in the same paper of Damanik and Gorodetski.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110387"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002853","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we find a full Lebesgue measure set of frequencies Iˆ[0,1]Q such that for any (α,λ)Iˆ×[24,), the Hausdorff and box dimensions of the spectrum of the Sturmian Hamiltonian Hα,λ,θ coincide and are independent of α. Denote the common value by D(λ), we show that D(λ) satisfies a Bowen's type formula, and is locally Lipschitz. We also obtain the exact asymptotic behavior of D(λ) as λ tends to ∞. This considerably improves the result of Damanik and Gorodetski (Comm. Math. Phys. 337, 2015). We also show that for any (α,λ)Iˆ×[24,), the density of states measure of Hα,λ,θ is exact-dimensional; its Hausdorff and packing dimensions coincide and are independent of α. Denote the common value by d(λ), we show that d(λ) satisfies a Young's type formula, and is locally Lipschitz. We also obtain the exact asymptotic behavior of d(λ) as λ tends to ∞. During the course of study, we also answer or partially answer several questions in the same paper of Damanik and Gorodetski.
图尔米安哈密顿量的谱和态密度的几乎确定的维度性质
在本文中,我们找到了一个频率I´[0,1]∈Q的完整Lebesgue测度集,使得对于任意(α,λ)∈I´x[24,∞),Sturmian哈密顿函数Hα,λ,θ的频谱的Hausdorff维数和box维数重合并且与α无关。用D(λ)表示公共值,我们证明了D(λ)满足Bowen型公式,并且是局部Lipschitz。我们还得到了D(λ)在λ趋于∞时的确切渐近性质。这大大提高了Damanik和Gorodetski (Comm. Math)的结果。物理学报,337,2015)。我们还证明了对于任意(α,λ)∈I φ x[24,∞],Hα,λ,θ的态测度的密度是精确维的;它的豪斯多夫尺寸和填料尺寸重合并且与α无关。用d(λ)表示公共值,我们证明d(λ)满足Young型公式,并且是局部Lipschitz。我们还得到了d(λ)在λ趋于∞时的确切渐近性质。在学习过程中,我们也回答或部分回答了Damanik和Gorodetski在同一篇论文中的几个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信