On formal non-commutative deformations of smooth varieties

IF 1.5 1区 数学 Q1 MATHEMATICS
Yujiro Kawamata
{"title":"On formal non-commutative deformations of smooth varieties","authors":"Yujiro Kawamata","doi":"10.1016/j.aim.2025.110392","DOIUrl":null,"url":null,"abstract":"<div><div>We will develop a formal non-commutative (NC) deformation theory of smooth algebraic varieties <em>X</em> defined over a field <em>k</em>, and describe a semi-universal deformation where the tangent space <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and the obstruction space <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> are given by the Hochschild cohomology groups.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110392"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002907","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We will develop a formal non-commutative (NC) deformation theory of smooth algebraic varieties X defined over a field k, and describe a semi-universal deformation where the tangent space T1 and the obstruction space T2 are given by the Hochschild cohomology groups.
光滑变异体的形式非交换变形
我们将建立定义在域k上的光滑代数变体X的形式非交换(NC)变形理论,并描述一种切空间T1和阻塞空间T2由Hochschild上同调群给出的半泛变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信