Rigorous convergence bounds for stochastic differential equations with application to uncertainty quantification

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Liam A.A. Blake, John Maclean, Sanjeeva Balasuriya
{"title":"Rigorous convergence bounds for stochastic differential equations with application to uncertainty quantification","authors":"Liam A.A. Blake,&nbsp;John Maclean,&nbsp;Sanjeeva Balasuriya","doi":"10.1016/j.physd.2025.134742","DOIUrl":null,"url":null,"abstract":"<div><div>Prediction via continuous-time models will always be subject to model error, for example due to unexplainable phenomena, uncertainties in any data driving the model, or discretisation/resolution issues. In this paper, we consider a general class of stochastic differential equations and provide rigorous convergence bounds to an analytically solvable approximation. We provide the explicit convergence rate for all moments of a fully non-autonomous model with both multiplicative noise and uncertain initial conditions. Our second main contribution is to extend stochastic sensitivity, a recently introduced uncertainty quantification tool, to arbitrary dimensions and provide a new calculation method that empowers rapid computation. We demonstrate the power and adaptability of our contributions on a diverse set of numerical examples in 1-, 2-, 3-, and 4-dimensions, including providing stochastic sensitivity calculations for an idealised eddy parameterisation of the Gulf Stream.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134742"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction via continuous-time models will always be subject to model error, for example due to unexplainable phenomena, uncertainties in any data driving the model, or discretisation/resolution issues. In this paper, we consider a general class of stochastic differential equations and provide rigorous convergence bounds to an analytically solvable approximation. We provide the explicit convergence rate for all moments of a fully non-autonomous model with both multiplicative noise and uncertain initial conditions. Our second main contribution is to extend stochastic sensitivity, a recently introduced uncertainty quantification tool, to arbitrary dimensions and provide a new calculation method that empowers rapid computation. We demonstrate the power and adaptability of our contributions on a diverse set of numerical examples in 1-, 2-, 3-, and 4-dimensions, including providing stochastic sensitivity calculations for an idealised eddy parameterisation of the Gulf Stream.
随机微分方程的严格收敛界及其在不确定性量化中的应用
通过连续时间模型进行预测总是会受到模型误差的影响,例如由于无法解释的现象,驱动模型的任何数据的不确定性,或离散化/分辨率问题。本文考虑了一类一般的随机微分方程,并给出了一个解析可解近似的严格收敛界。我们给出了具有乘性噪声和不确定初始条件的完全非自治模型的所有矩的显式收敛速率。我们的第二个主要贡献是将随机灵敏度(一种最近引入的不确定性量化工具)扩展到任意维度,并提供了一种新的计算方法,使快速计算成为可能。我们在1、2、3和4维的不同数值示例上展示了我们的贡献的力量和适应性,包括为墨西哥湾流的理想涡旋参数化提供随机灵敏度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信