Liam A.A. Blake, John Maclean, Sanjeeva Balasuriya
{"title":"Rigorous convergence bounds for stochastic differential equations with application to uncertainty quantification","authors":"Liam A.A. Blake, John Maclean, Sanjeeva Balasuriya","doi":"10.1016/j.physd.2025.134742","DOIUrl":null,"url":null,"abstract":"<div><div>Prediction via continuous-time models will always be subject to model error, for example due to unexplainable phenomena, uncertainties in any data driving the model, or discretisation/resolution issues. In this paper, we consider a general class of stochastic differential equations and provide rigorous convergence bounds to an analytically solvable approximation. We provide the explicit convergence rate for all moments of a fully non-autonomous model with both multiplicative noise and uncertain initial conditions. Our second main contribution is to extend stochastic sensitivity, a recently introduced uncertainty quantification tool, to arbitrary dimensions and provide a new calculation method that empowers rapid computation. We demonstrate the power and adaptability of our contributions on a diverse set of numerical examples in 1-, 2-, 3-, and 4-dimensions, including providing stochastic sensitivity calculations for an idealised eddy parameterisation of the Gulf Stream.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134742"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction via continuous-time models will always be subject to model error, for example due to unexplainable phenomena, uncertainties in any data driving the model, or discretisation/resolution issues. In this paper, we consider a general class of stochastic differential equations and provide rigorous convergence bounds to an analytically solvable approximation. We provide the explicit convergence rate for all moments of a fully non-autonomous model with both multiplicative noise and uncertain initial conditions. Our second main contribution is to extend stochastic sensitivity, a recently introduced uncertainty quantification tool, to arbitrary dimensions and provide a new calculation method that empowers rapid computation. We demonstrate the power and adaptability of our contributions on a diverse set of numerical examples in 1-, 2-, 3-, and 4-dimensions, including providing stochastic sensitivity calculations for an idealised eddy parameterisation of the Gulf Stream.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.