Murside Degirmenci , Murat Surucu , Matjaž Perc , Yalcin Isler
{"title":"Convolutional neural networks can diagnose schizophrenia","authors":"Murside Degirmenci , Murat Surucu , Matjaž Perc , Yalcin Isler","doi":"10.1016/j.jocs.2025.102634","DOIUrl":null,"url":null,"abstract":"<div><div>Schizophrenia is a severe mental disorder that affects how individuals think, perceive, and behave, often making accurate and timely diagnosis a significant challenge for clinicians. Traditional diagnostic approaches, such as interviews and psychological tests, have limitations in capturing the complex neurological underpinnings of the condition. In recent years, machine learning and deep learning techniques have shown promise in improving diagnostic accuracy across a variety of medical domains. However, relatively few studies have applied these methods to schizophrenia diagnosis, despite their potential. In this study, we investigate whether convolutional neural networks can effectively diagnose schizophrenia using publicly available EEG data. We achieved classification accuracies of 98.26% in subject-independent settings and 91.21% in subject-dependent settings on the test data, using a fully connected layer based on a Multi-Layer Perceptron classifier. These results appear promising when compared to the current state of the art.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"90 ","pages":"Article 102634"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001115","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Schizophrenia is a severe mental disorder that affects how individuals think, perceive, and behave, often making accurate and timely diagnosis a significant challenge for clinicians. Traditional diagnostic approaches, such as interviews and psychological tests, have limitations in capturing the complex neurological underpinnings of the condition. In recent years, machine learning and deep learning techniques have shown promise in improving diagnostic accuracy across a variety of medical domains. However, relatively few studies have applied these methods to schizophrenia diagnosis, despite their potential. In this study, we investigate whether convolutional neural networks can effectively diagnose schizophrenia using publicly available EEG data. We achieved classification accuracies of 98.26% in subject-independent settings and 91.21% in subject-dependent settings on the test data, using a fully connected layer based on a Multi-Layer Perceptron classifier. These results appear promising when compared to the current state of the art.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).