A novel self-learning model to classify unlabeled multivariate time-series applied to fault diagnosis

0 ENERGY & FUELS
Ilan Sousa Figueirêdo , Lílian Lefol Nani Guarieiro , Erick Giovani Sperandio Nascimento
{"title":"A novel self-learning model to classify unlabeled multivariate time-series applied to fault diagnosis","authors":"Ilan Sousa Figueirêdo ,&nbsp;Lílian Lefol Nani Guarieiro ,&nbsp;Erick Giovani Sperandio Nascimento","doi":"10.1016/j.geoen.2025.213988","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional supervised learning paradigm relies on large volumes of annotated data, which is often costly and labor-intensive to obtain, creating a major bottleneck in developing deep learning solutions. To overcome this limitation, we propose a novel self-learning model for failure classification in multivariate time-series data using a semi-supervised approach that combines unsupervised and supervised learning. Initially, an unsupervised method identifies normal and faulty patterns to pseudo-label a small dataset. A deep supervised learning model is then trained with these pseudo-labels, incorporating a confidence layer to assign prediction confidence scores. This enables iterative refinement and progressive construction of a labeled dataset from unlabeled data. Furthermore, transfer learning is employed to support multiclass fault classification, allowing the model to generalize across evolving fault types. Our contribution lies in the unique orchestration of unsupervised preprocessing, confidence-guided supervision, and transfer learning to adaptively retain prior knowledge while minimizing human annotation. This makes the proposed framework particularly well-suited for dynamic environments where labeled failure data is scarce and incrementally available.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"253 ","pages":"Article 213988"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294989102500346X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional supervised learning paradigm relies on large volumes of annotated data, which is often costly and labor-intensive to obtain, creating a major bottleneck in developing deep learning solutions. To overcome this limitation, we propose a novel self-learning model for failure classification in multivariate time-series data using a semi-supervised approach that combines unsupervised and supervised learning. Initially, an unsupervised method identifies normal and faulty patterns to pseudo-label a small dataset. A deep supervised learning model is then trained with these pseudo-labels, incorporating a confidence layer to assign prediction confidence scores. This enables iterative refinement and progressive construction of a labeled dataset from unlabeled data. Furthermore, transfer learning is employed to support multiclass fault classification, allowing the model to generalize across evolving fault types. Our contribution lies in the unique orchestration of unsupervised preprocessing, confidence-guided supervision, and transfer learning to adaptively retain prior knowledge while minimizing human annotation. This makes the proposed framework particularly well-suited for dynamic environments where labeled failure data is scarce and incrementally available.
一种新的多变量时间序列自学习分类模型应用于故障诊断
传统的监督式学习模式依赖于大量带注释的数据,这些数据通常成本高昂且需要耗费大量人力,这是开发深度学习解决方案的主要瓶颈。为了克服这一限制,我们提出了一种新的自学习模型,用于多变量时间序列数据的故障分类,该模型使用半监督方法结合了无监督和监督学习。首先,一种无监督的方法识别正常和错误的模式,对小数据集进行伪标签。然后用这些伪标签训练深度监督学习模型,并结合一个置信度层来分配预测置信度分数。这使得从未标记数据迭代细化和逐步构建标记数据集成为可能。此外,采用迁移学习支持多类故障分类,使模型能够跨越不断发展的故障类型进行泛化。我们的贡献在于独特的无监督预处理,信心引导监督和迁移学习的编排,以自适应地保留先验知识,同时最大限度地减少人为注释。这使得所提出的框架特别适合于标记故障数据稀少且逐渐可用的动态环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信